首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Organic geochemistry of the Silurian Tanezzuft Formation and crude oils,NC115 Concession,Murzuq Basin,southwest Libya
Institution:1. Faculty of Earth Sciences, University of Silesia, B?dzińska 60, 41-200 Sosnowiec, Poland;2. Polish Geological Institute, National Research Institute, Zgoda 21, 25-953 Kielce, Poland;4. Oregon State University, Department of Chemistry, Corvallis, Oregon 97331, USA;5. Faculty of Civil Engineering and Architecture, Kielce University of Technology, al. Tysi?clecia Państwa Polskiego 7, 25-314 Kielce, Poland
Abstract:Thirty-six Silurian core and cuttings samples and 10 crude oil samples from Ordovician reservoirs in the NC115 Concession, Murzuq Basin, southwest Libya were studied by organic geochemical methods to determine source rock organic facies, conditions of deposition, thermal maturity and genetic relationships. The Lower Silurian Hot Shale at the base of the Tanezzuft Formation is a high-quality oil/gas-prone source rock that is currently within the early oil maturity window. The overall average TOC content of the Hot Shale is 7.2 wt% with a maximum recorded value of 20.9 wt%. By contrast, the overlying deposits of the Tanezzuft Formation have an average TOC of 0.6 wt% and a maximum value of 1.1 wt%. The organic matter in the Hot Shale consists predominantly of mixed algal and terrigenous Type-II/III kerogen, whereas the rest of the formation is dominated by terrigenous Type-III organic matter with some Type II/III kerogen. Oils from the A-, B- and H-oil fields in the NC115 Concession were almost certainly derived from marine shale source rocks that contained mixed algal and terrigenous organic input reflecting deposition under suboxic to anoxic conditions. The oils are light and sweet, and despite being similar, were almost certainly derived from different facies and maturation levels within mature source rocks. The B-oils were generated from slightly less mature source rocks than the others. Based on hierarchical cluster analysis (HCA), principal component analysis (PCA), selected source-related biomarkers and stable carbon isotope ratios, the NC115 oils can be divided into two genetic families: Family-I oils from Ordovician Mamuniyat reservoirs were probably derived from older Palaeozoic source rocks, whereas Family-II oils from Ordovician Mamuniyat–Hawaz reservoirs were probably charged from a younger Palaeozoic source of relatively high maturity. A third family appears to be a mixture of the two, but is most similar to Family-II oils. These oil families were derived from one proven mature source rock, the Early Silurian, Rhuddanian Hot Shale. There is a good correlation between the Family-II and -III oils and the Hot Shale based on carbon isotope compositions. Saturated and aromatic maturity parameters indicate that these oils were generated from a source rock of considerably higher maturity than the examined rock samples. The results imply that the oils originated from more mature source rocks outside the NC115 Concession and migrated to their current positions after generation.
Keywords:Source rocks  Silurian  Biomarkers  NC115 Concession  Murzuq Basin  Libya
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号