首页 | 本学科首页   官方微博 | 高级检索  
     


On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain
Authors:D. R. Faulkner   A. C. Lewis  E. H. Rutter
Affiliation:Rock Deformation Laboratory, Department of Earth Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
Abstract:
Deciphering the internal structure of large fault zones is fundamental if a proper understanding is to be gained of their mechanical, hydrological and seismological properties. To this end, new detailed mapping and microstructural observations of the excellently exposed Carboneras fault zone in southeastern Spain have been used to elucidate both the internal arrangement of fault products and their likely mechanical properties. The fault is a 40 km offset strike-slip fault, which constitutes part of the Africa–Iberia plate boundary. The zone of faulting is 1 km in width not including the associated damage zone surrounding the fault. It is composed of continuous strands of phyllosilicate-rich fault gouge that bound lenses of variably broken-up protolith. This arrangement provides a number of fluid flow and fluid sealing possibilities within the fault zone. The gouge strands exhibit distributed deformation and are inferred to have strain hardening and/or velocity hardening characteristics. Also included in the fault zone are blocks of dolomite that contain thin (<1 cm thick) fault planes inferred to have been produced by strain weakening/velocity weakening behaviour. These fault planes have a predominantly R1 Riedel shear orientation and are arranged in an en echelon pattern. A conceptual model of this type of wide fault zone is proposed which contrasts with previous narrow fault zone models. The observed structural and inferred mechanical characteristics of the Carboneras fault zone are compared to seismological observations of the San Andreas fault around Parkfield, CA. Similarities suggest that the Carboneras fault structure may be a useful analogue for this portion of the San Andreas fault at depth.
Keywords:Faults   Structure   Mechanics   Earthquakes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号