Assimilation and Fractional Crystallization Controlled by Transport Process of Crustal Melt: Implications from an Alkali Basalt-Dacite Suite from Rishiri Volcano, Japan |
| |
Authors: | KURITANI, TAKESHI KITAGAWA, HIROSHI NAKAMURA, EIZO |
| |
Affiliation: | THE PHEASANT MEMORIAL LABORATORY FOR GEOCHEMISTRY & COSMOCHEMISTRY, INSTITUTE FOR STUDY OF THE EARTH'S INTERIOR, OKAYAMA UNIVERSITY, MISASA, TOTTORI 682-0193, JAPAN |
| |
Abstract: | Mechanisms of fractional crystallization with simultaneous crustalassimilation (AFC) are examined for the Kutsugata and Tanetomilavas, an alkali basaltdacite suite erupted sequentiallyfrom Rishiri Volcano, northern Japan. The major element variationswithin the suite can be explained by boundary layer fractionation;that is, mixing of a magma in the main part of the magma bodywith a fractionated interstitial melt transported from the mushyboundary layer at the floor. Systematic variations in SiO2 correlatewith variations in the Pb, Sr and Nd isotopic compositions ofthe lavas. The geochemical variations of the lavas are explainedby a constant and relatively low ratio of assimilated mass tocrystallized mass (r value). In the magma chamberin which the Kutsugata and Tanetomi magmas evolved, a strongthermal gradient was present and it is suggested that the marginalpart of the reservoir was completely solidified. The assimilantwas transported by crack flow from the partially fused floorcrust to the partially crystallized floor mush zone throughfractures in the solidified margin, formed mainly by thermalstresses resulting from cooling of the solidified margin andheating of the crust. The crustal melt was then mixed with thefractionated interstitial melt in the mushy zone, and the mixedmelt was further transported by compositional convection tothe main magma, causing its geochemical evolution to be characteristicof AFC. The volume flux of the assimilant from the crust tothe magma chamber is suggested to have decreased progressivelywith time (proportional to t1/2), and was about 3 x 102m/year at t = 10 years and 1 x 102 m/year at t = 100years. It has been commonly considered that the heat balancebetween magmas and the surrounding crust controls the couplingof assimilation and fractional crystallization processes (i.e.absolute value of r). However, it is inferred from this studythat the ratio of assimilated mass to crystallized mass canbe controlled by the transport process of the assimilant fromthe crust to magma chambers. KEY WORDS: assimilation and fractional crystallization; mass balance model; magma chamber; melt transport; Pb isotope |
| |
Keywords: | : assimilation and fractional crystallization mass balance model magma chamber melt transport Pb isotope |
本文献已被 Oxford 等数据库收录! |
|