首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM遥感矿化蚀变信息提取研究
引用本文:傅文杰,洪金益,朱谷昌. 基于SVM遥感矿化蚀变信息提取研究[J]. 国土资源遥感, 2006, 0(2): 16-19,i0002
作者姓名:傅文杰  洪金益  朱谷昌
作者单位:1. 中南大学地学与环境工程学院,长沙,410083;莆田学院,莆田,351100
2. 中南大学地学与环境工程学院,长沙,410083
3. 有色金属矿产地质调查中心,北京,100814
摘    要:提出一种基于支持向量机(SVM)遥感数据矿化蚀变信息提取的新方法。该方法首先根据蚀变岩及矿体围岩的实测光谱数据,利用光谱角度制图法(SAM)提取训练样本,应用交叉比对(cross-validation)算法确定最优SVM模型参数,选择径向基(RBF)核函数,训练SVM分类器模型;然后,用训练好的SVM模型进行遥感矿化蚀变信息提取;最后,选择青海芒崖地区的ETM数据进行遥感矿化蚀变信息提取试验。试验结果经野外检查和验证,效果良好。

关 键 词:SAM  SVM  矿化蚀变信息  提取  遥感数据
文章编号:1001-070X(2006)02-0016-04
收稿时间:2006-02-20
修稿时间:2006-02-202006-03-30

THE EXTRACTION OF MINERALIZED AND ALTERED ROCK INFORMATION FROM REMOTE SENSING IMAGE BASED ON SVM
FU Wen-jie,HONG Jin-yi,ZHU Gu-chang. THE EXTRACTION OF MINERALIZED AND ALTERED ROCK INFORMATION FROM REMOTE SENSING IMAGE BASED ON SVM[J]. Remote Sensing for Land & Resources, 2006, 0(2): 16-19,i0002
Authors:FU Wen-jie  HONG Jin-yi  ZHU Gu-chang
Affiliation:1. School of Geoscienee and Environmental Engineering, Central South University, Changsha 410083, China; 2. Putian University, Putian 351100, China; 3. Nonferrous Metals Resource Geological Survey of China, Beijing 100814, China
Abstract:A new method for extracting mineralization information from remote sensing image based on Support Vector Machines(SVM) is presented in this paper.According to the field measured spectral data of mineralized alteration rocks and wall rocks,the authors first extracted the training examples by Spectral Angle Mapper(SAM),and then selected the RBF as the kernel function.After that,cross-validation algorithm was applied to seek superior SVM model parameters.This model was used to extract mineralization information from remote sensing image in Mangya area,Qinghai province.Practice has proved that this method is effective in extracting mineralization information.
Keywords:SAM  SVM  Mineralied and altered rock information  Extraction  Remote sensing data  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号