首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aragonite dissolution on the Bermuda pedestal: Its depth and geochemical significance
Authors:Robert A Berner  Elizabeth K Berner  Robin S Keir
Institution:Department of Geology and Geophysics, Yale University, New Haven, Conn. ,USA;15 Hickory Hill Road, North Haven, Conn. ,USA;Department of Geology and Geophysics, Yale University, New Haven, Conn. ,USA
Abstract:The depth distribution of pteropod and planktonic foram tests, and fine-grained (<62 μm) aragonite, high-Mg calcite (12 mode mol.% MgCO3), and low-Mg calcite has been determined for surface sediments of an area of the eastern slope of the Bermuda pedestal. Over the range 1800–3000 m, fine-grained aragonite and fine-grained high-Mg calcite gradually disappear relative to fine-grained low-Mg calcite, and pteropods gradually disappear relative to planktonic forams. This is interpreted as preferential dissolution of aragonite (and high-Mg calcite) relative to low-Mg calcite over this depth range. Coarse aragonitic debris derived from shallow-water organisms living on the Bermuda platform does not show consistent disappearance over the same depth zone. Chemical analyses of bottom water samples taken at the same time as some of the sediment samples indicate that the degree of saturation with respect to aragonite ΩA over the zone of aragonite disappearance ranges from 0.55 to 0.85; i.e. major dissolution occurs only at ΩA values distinctly less than one. These results lend credence to the hypothesis that CaCO3 dissolution in the oceans, both as aragonite and as calcite, takes place mainly as a response to complex chemical kinetic phenomena and not as a result of the simple attainment of undersaturation (thermodynamic hypothesis) or the resuspension of bottom sediment (hydrodynamic hypothesis).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号