首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photometry of pluto in the last decade and before: evidence for volatile transport?
Authors:BJ Buratti  JK Hillier  A Heinze  KA Tryka  J Ward  J Young
Institution:a Jet Propulsion Laboratory, Palomar Observatory, California Institute of Technology, 4800 Oak Grove Drive, Mailstop 183-501, Pasadena, CA 91109, USA
b Department of Physics and Astronomy, California State University—Los Angeles, Los Angeles, CA, USA
Abstract:Photometric observations of Pluto in the BVR filter system were obtained in 1999 and in 1990-1993, and observations in the 0.89-μm methane absorption band were obtained in 2000. Our 1999 observations yield lightcurve amplitudes of 0.30 ± 0.01, 0.26 ± 0.01, and 0.21 ± 0.02 and geometric albedos of 0.44 ± 0.04, 0.52 ± 0.03, and 0.58 ± 0.02 in the B, V, and R filters, respectively. The low-albedo hemisphere of Pluto is slightly redder than the higher albedo hemisphere. A comparison of our results and those from previous epochs shows that the lightcurve of Pluto changes substantially through time. We developed a model that fully accounts for changes in the lightcurve caused by changes in the viewing geometry between the Earth, Pluto, and the Sun. We find that the observed changes in the amplitude of Pluto’s lightcurve can be explained by viewing geometry rather than by volatile transport. We also discovered a measurable decrease since 1992 of ∼0.03 magnitudes in the amplitude of Pluto’s lightcurve, as the model predicts. Pluto’s geometric albedo does not appear to be currently increasing, as our model predicts, although given the uncertainties in both the model and the measurements of geometric albedo, this result is not firm evidence for volatile transport. The maximum of methane-absorption lightcurve occurs near the minimum of the BVR lightcurves. This result suggests that methane is more abundant in the brightest regions of Pluto. Pluto’s phase coefficient exhibits a color dependence, ranging from 0.037 ± 0.01 in the B filter to 0.032 ± 0.01 in the R filter. Pluto’s phase curve is most like those of the bright, recently resurfaced satellites Triton and Europa. Although Pluto shows no strong evidence for volatile transport now (unlike Triton), it is important to continue to observe Pluto as it moves away from perihelion.
Keywords:Pluto  Surfaces  planets  Photometry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号