首页 | 本学科首页   官方微博 | 高级检索  
     

利用层次Voronoi图进行点群综合
引用本文:李佳田,康顺,罗富丽. 利用层次Voronoi图进行点群综合[J]. 测绘学报, 2014, 43(12): 1300-1306. DOI: 10.13485/j.cnki.11-2089.2014.0166
作者姓名:李佳田  康顺  罗富丽
作者单位:昆明理工大学 国土资源工程学院, 云南 昆明 650093
摘    要:通过距离权重描述点的重要程度,采用改进的k-means算法得到点群的聚类中心,进而以聚类中心为基础,构建了层次加权Voronoi图与Voronoi层次树结构.以点群的分布范围、排列方式与密度为度量,给出了基于Voronoi层次树结构的点群综合方法,确保了点群综合前后在空间形态分布上的一致性.结合地理统计学计算,对综合方法作了进一步的量化评估与优化.经验证,本文方法是可行、有效的.

关 键 词:点群综合  权重  空间聚类  层次Voronoi图  树结构  
收稿时间:2013-06-03
修稿时间:2014-01-01

Point Group Generalization Method Based on Hierarchical Voronoi Diagram
LI Ji ati an,KANG Shun,LUO Fuli. Point Group Generalization Method Based on Hierarchical Voronoi Diagram[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1300-1306. DOI: 10.13485/j.cnki.11-2089.2014.0166
Authors:LI Ji ati an  KANG Shun  LUO Fuli
Affiliation:Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract:The importance of the point is described by distance weight and the clustering center point of a point group is obtained by modified k-means algorithm. Furthermore, the clustering center is taken as base to construct hierarchical weighted Voronoi diagram and hierarchical tree structure. Distribution scope, arrangement, and density of the group is taken as the measurement to construct the point generalization method based on hierarchical Voronoi diagram tree structure, thus ensuring the consistency in spatial morphology before and after. Combination with geological statistics calculation, this generalization method is estimated and optimized. Finally, the practicability and availability of this method is confirmed through concrete experiment.
Keywords:point group generalization  weight  spatial clustering  hierarchical Voronoi diagram  tree structure
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号