首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Linking rainfall-induced landslides with predictions of debris flow runout distances
Authors:Jonas von Ruette  Peter Lehmann  Dani Or
Institution:1.Institute of Biogeochemistry and Pollutant Dynamics,ETH Zurich,Zurich,Switzerland;2.Terrasense Switzerland AG,Buchs,Switzerland
Abstract:Rapid debris flows are among the most destructive natural hazards in steep mountainous terrains. Prediction of their path and impact hinges on knowledge of initiation location and the size and constitution of the released mass. To better link mass release initiation with debris flow paths and runout lengths, we propose to capitalize on a newly developed model for rainfall-induced landslide initiation (“Catchment-scale Hydro-mechanical Landslide Triggering” CHLT model, von Ruette et al. 2013) and couple it with simple estimates of debris flow runout distances and pathways. Landslide locations and volumes provided by the CHLT model are used as inputs to simulate debris flow runout distances with two empirical- and two physically-based models. The debris flow runout models were calibrated using two landslide inventories in the Swiss Alps obtained following a large rainfall event in 2005. We first fitted and tested the models for the “Prättigau” inventory, where detailed information on runout path was available, and then applied the models to landslides inventoried from a different catchment (“Napf”). The predicted debris flow runout distances (emanating from CHLT simulated landslide positions) were well in the range of observed values for the physically-based approaches. The empirical approaches tend to overestimate runout distances relative to observations. These preliminary results demonstrate the added value of linking shallow landslide triggering models with predictions of debris flow runout pathways for a range of soil states and triggering events, thus providing a more complete hazard assessment picture for debris flow exposure at the catchment scale.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号