首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of Uranyl Minerals Using Oxygen K‐Edge X‐Ray Absorption Spectroscopy
Authors:Jesse D. Ward  Mark Bowden  C. Tom Resch  Steven Smith  Bruce K. McNamara  Edgar C. Buck  Gregory C. Eiden  Andrew M. Duffin
Affiliation:Pacific Northwest National Laboratory, Richland, WA, USA
Abstract:
Although most of the world's uranium exists as pitchblende or uraninite, this mineral can be weathered to a great variety of secondary uranium minerals, most containing the uranyl cation. Anthropogenic uranium compounds can also react in the environment, leading to spatial–chemical alterations that could be useful for nuclear forensics analyses. Soft X‐ray absorption spectroscopy (XAS) has the advantages of being non‐destructive, element‐specific and sensitive to electronic and physical structure. The soft X‐ray probe can also be focused to a spot size on the order of tens of nanometres, providing chemical information with high spatial resolution. However, before XAS can be applied at high spatial resolution, it is necessary to find spectroscopic signatures for a variety of uranium compounds in the soft X‐ray spectral region. To that end, we collected the near edge X‐ray absorption fine structure (NEXAFS) spectra of a variety of common uranyl‐bearing minerals, including uranyl carbonates, oxyhydroxides, phosphates and silicates. We find that uranyl compounds can be distinguished by class (carbonate, oxyhydroxide, phosphate or silicate) based on their oxygen K‐edge absorption spectra. This work establishes a database of reference spectra for future spatially resolved analyses. We proceed to show scanning X‐ray transmission microscopy (STXM) data from a schoepite particle in the presence of an unknown contaminant.
Keywords:uranium  X‐ray absorption spectroscopy  scanning transmission X‐ray microscopy  nuclear forensics  uranium  spectroscopie d'absorption des rayons X  microscopie à   balayage par transmission de rayons X  expertise scientifique nuclé  aire
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号