首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal design of groundwater remediation systems using a multi-objective fast harmony search algorithm
Authors:Qiankun Luo  Jianfeng Wu  Xiaomin Sun  Yun Yang  Jichun Wu
Affiliation:1. Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210093, China
Abstract:A new multi-objective optimization methodology is developed, whereby a multi-objective fast harmony search (MOFHS) is coupled with a groundwater flow and transport model to search for optimal design of groundwater remediation systems under general hydrogeological conditions. The MOFHS incorporates the niche technique into the previously improved fast harmony search and is enhanced by adding the Pareto solution set filter and an elite individual preservation strategy to guarantee uniformity and integrity of the Pareto front of multi-objective optimization problems. Also, the operation library of individual fitness is introduced to improve calculation speed. Moreover, the MOFHS is coupled with the commonly used flow and transport codes MODFLOW and MT3DMS, to search for optimal design of pump-and-treat systems, aiming at minimization of the remediation cost and minimization of the mass remaining in aquifers. Compared with three existing multi-objective optimization methods, including the improved niched Pareto genetic algorithm (INPGA), the non-dominated sorting genetic algorithm II (NSGAII), and the multi-objective harmony search (MOHS), the proposed methodology then demonstrated its applicability and efficiency through a two-dimensional hypothetical test problem and a three-dimensional field problem in Indiana (USA).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号