首页 | 本学科首页   官方微博 | 高级检索  
     

无人机遥感系统的研究进展与应用前景
引用本文:徐亚明, 石娟, 安动动, 马旭东. 利用影像分割和匹配特征进行无人机影像变化检测[J]. 武汉大学学报 ( 信息科学版), 2016, 41(10): 1286-1291. DOI: 10.13203/j.whugis20140873
作者姓名:徐亚明  石娟  安动动  马旭东
作者单位:1.武汉大学测绘学院, 湖北 武汉, 430079;2.精密工程与工业测量国家测绘地理信息局重点实验室, 湖北 武汉, 430079;3.天津市测绘院, 天津, 300381;4.61243部队, 新疆 乌鲁木齐, 830006
基金项目:国家自然科学基金(41474005)
摘    要:针对无人机拍摄的影像偏角大、投影差明显的问题,提出一种基于影像分割与匹配特征的无人机影像变化检测方法。该方法基于匹配的特征点和分割的单元,以配准误差为缓冲半径进行相关运算,并提出了双向互相关方法来抑制影像分割不一致对变化检测结果的影响。实验结果表明,该方法提高了无人机影像变化检测的精度,对无人机影像由于大倾角所带来的配准误差问题有较好的容忍度,并削弱了无人机影像的投影差对于变化检测的影响。

关 键 词:无人机  投影差  分割  双向互相关  影像匹配
收稿时间:2015-06-17

Research Advance and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System
XU Yaming, SHI Juan, AN Dongdong, MA Xudong. Change Detection Based on Segmentation and Matched Features Points for UAV Images[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1286-1291. DOI: 10.13203/j.whugis20140873
Authors:XU Yaming  SHI Juan  AN Dongdong  MA Xudong
Affiliation:1.School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;2.Key Laboratory of Precise Engineering & Industry Surveying, National Administration of Surveying, Mapping and Geoinformation, Wuhan 430079, China;3.Tianjin Institute of Surveying and Mapping, Tianjin 300381, China;4.Troop 61243, Ulumuqi 830006, China
Abstract:UAV(unmanned aerial vehicle) images suffer from big registration and projection errors when UAV images are captured due to unstable rotary wings. In this paper, we propose a new method for change detection using UAV images, that compensates for these sources of error. Our method combines feature points matching and image segmentation. By merging the results of unmatched feature points and low-similarity segmented objects, the changed areas will be detected. By using the value of image registration error as searching buffer radius, mutual cross correlation calculations of the corresponding segmented objects are employed to leverage the impact of inconsistent segmentations on change detection results. Experimental results illustrate that the proposed method outperforms traditional methods as it integrates the context texture and spectral information from segmented objects, which can weaken the impact of image registration and projective errors resulting from the large rotation angle and improve the accuracy of change detection to certain extent.
Keywords:UAV  projective errors  image segmentation  mutual cross correlation  image matching
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号