首页 | 本学科首页   官方微博 | 高级检索  
     

浅埋隧道围岩应力场的计算复变函数求解法
引用本文:王志良,申林方,姚激,高成杰. 浅埋隧道围岩应力场的计算复变函数求解法[J]. 岩土力学, 2010, 31(Z1): 86-90
作者姓名:王志良  申林方  姚激  高成杰
作者单位:1.同济大学 地下建筑与工程系,上海 200092;2.中国科学院武汉岩土力学研究所,武汉 430071; 3.昆明理工大学 工程力学系,昆明 650024;4.北京市环境保护科学研究院,北京 100037
基金项目:云南省应用基础研究计划项目 
摘    要:
对于受地表边界和地面荷载影响的浅埋隧道的围岩应力场,由于在数学处理上存在一定的困难,很难用解析解来进行分析,而通常采用边界元或有限元的数值方法来解答。为了求解浅埋隧道的应力场,采用边界配点来确定边界条件,同时用保角映射将一个含圆孔的半无限空间区域映射为圆环域,然后把这个区域内的解析函数展开成Laurent级数的形式,利用Muskhelishvili的复变函数理论和最小二乘法来确定解析函数的各项系数,从而求得浅埋隧道围岩压力的半数值、半解析解,最后通过算例给出了围岩应力的分布情况。计算结果表明,该方法计算精度高、计算量小,具有应用价值。

关 键 词:保角映射  复变函数  浅埋隧道  半数值半解析解  计算复变函数法  
收稿时间:2010-04-23

Calculation of stress field in surrounding rocks of shallow tunnel using computational function of complex variable method
WANG Zhi-liang,SHEN Lin-fang,YAO Ji,GAO Cheng-jie. Calculation of stress field in surrounding rocks of shallow tunnel using computational function of complex variable method[J]. Rock and Soil Mechanics, 2010, 31(Z1): 86-90
Authors:WANG Zhi-liang  SHEN Lin-fang  YAO Ji  GAO Cheng-jie
Affiliation:1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 3. Department of Engineering Mechanics, Kunming University of Science and Technology, Kunming 650024, China; 4. Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
Abstract:
Due to the influence of surface boundary and ground loads, the analysis of surrounding rocks of shallow tunnel is difficult by mathematic method. The analytic solution is too difficulty to obtain, so many solutions were obtained by using boundary element method or finite element method. In order to obtain stress field in surrounding rocks of shallow tunnel, the boundary condition is determined by setting finite points; the considered region in the physical plane is mapped to a circular ring region in the image plane by using the complex conformal transformation; and then the analytic functions are expanded into Laurent series; the Laurent series’ coefficients is obtained by using the function of complex variable method founded by Muskhelishvili and the least square method. The semi-analytical and semi-numerical solution of shallow tunnel’s stress field could be obtained by putting the Laurent Series’ coefficients into equation. Finally, the stress of surrounding rocks is depicted through an example. The results show that the computational function of complex variable method is precise, efficient and applicable.
Keywords:conformal mapping  function of complex variable  shallow tunnel  the semi-analytical and semi-numerical solution  computational function of complex variable method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号