首页 | 本学科首页   官方微博 | 高级检索  
     

结合自注意力机制的多特征融合点云语义分割网络
作者姓名:夏旺
作者单位:中铁第四勘察设计院集团有限公司
基金项目:国家重点研发计划(2021YFB2600400);
摘    要:由于三维激光点云的无序性、稀疏性、非结构性以及光谱纹理信息缺乏,使得点云的语义信息提取十分困难,而可以直接对原始非结构化点云进行语义分割的PointNet++网络无法考虑点云的空间相关性。针对这个问题,本文提出了一种结合自注意力机制的多特征融合点云语义分割网络,使用PointNet++和非局部信息统计注意力模块分别提取点云的多尺度特征和空间相关性特征,并融合两种特征以进行最终的点云分割。通过在ISPRS 3D语义分割数据集上进行对比实验,证明本文通过自注意力机制提取的空间相关性特征优于人工设计的特征,可以明显提高点云语义分割的精度,本文方法较PointNet++总体精度提升了4.5%。

关 键 词:语义分割  自注意力机制  深度学习  点云
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号