首页 | 本学科首页   官方微博 | 高级检索  
     

Uncertainty analysis of groundwater model based on data assimilation北大核心CSCD
作者姓名:陈冲  张伟  邢庆辉  豆沂宣
作者单位:1.中国石油大学(北京) 信息科学与工程学院,北京 102249;2.中国科学院 西北生态环境资源研究院 冰冻圈科学国家重点实验室/可可托海站,甘肃 兰州 730000
基金项目:国家自然科学基金项目(62006247);国家重点研发计划项目(2019YFC1510501)
摘    要:黑河流域中下游地下水系统受上游冰冻圈融水和降雨的补给,由气候变暖导致的冰冻圈萎缩致使中下游地下水系统的稳定性面临更多的风险。地下水模型是地下水系统稳定性评估的有效手段,但是地下水模型参数往往存在较大的不确定性。为此,本文提出了基于数据同化算法的不确定性分析方法,通过包含观测资料信息减小模型不确定性。采用所提方法分析了(基于MODFLOW构建)黑河流域中游地下水模型中13个参数的不确定性,讨论了算法超参数的影响及其最优取值,分析了地下水模型参数的不确定性。实验结果证明数据同化算法可有效减小地下水模型参数的不确定性,观测资料的种类与数量对参数不确定性的减小起到重要作用;不同地下水模型参数的不确定性不同,地表水与地下水相互作用频繁的区域参数不确定性较大;含水层渗透系数、含水层给水度以及灌溉回流系数对模型输出的地下水位输出影响显著,河床水力传导系数对模型输出的河流流量影响较大。本研究将为地下水研究提供更加可靠的模型方法,为西北内流区地下水哺育的绿洲生态系统稳定可持续研究提供重要支撑。

关 键 词:地下水模型  不确定性分析  数据同化  MODFLOW
收稿时间:2020-11-30
修稿时间:2021-09-13
本文献已被 维普 等数据库收录!
点击此处可从《冰川冻土》浏览原始摘要信息
点击此处可从《冰川冻土》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号