首页 | 本学科首页   官方微博 | 高级检索  
     检索      

应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力
引用本文:张烨毓,曹茜,黄毅,戚明辉,李孝甫,林丹.应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力[J].岩矿测试,2020,39(2):188-198.
作者姓名:张烨毓  曹茜  黄毅  戚明辉  李孝甫  林丹
作者单位:页岩气评价与开采四川省重点实验室, 四川 成都 610091;自然资源部复杂构造区页岩气勘探开发工程技术创新中心, 四川 成都 610091;四川省科源工程技术测试中心, 四川 成都 610091,页岩气评价与开采四川省重点实验室, 四川 成都 610091;自然资源部复杂构造区页岩气勘探开发工程技术创新中心, 四川 成都 610091;四川省科源工程技术测试中心, 四川 成都 610091,页岩气评价与开采四川省重点实验室, 四川 成都 610091;自然资源部复杂构造区页岩气勘探开发工程技术创新中心, 四川 成都 610091;四川省科源工程技术测试中心, 四川 成都 610091,页岩气评价与开采四川省重点实验室, 四川 成都 610091;自然资源部复杂构造区页岩气勘探开发工程技术创新中心, 四川 成都 610091;四川省科源工程技术测试中心, 四川 成都 610091,页岩气评价与开采四川省重点实验室, 四川 成都 610091;自然资源部复杂构造区页岩气勘探开发工程技术创新中心, 四川 成都 610091;四川省科源工程技术测试中心, 四川 成都 610091,页岩气评价与开采四川省重点实验室, 四川 成都 610091;自然资源部复杂构造区页岩气勘探开发工程技术创新中心, 四川 成都 610091;四川省科源工程技术测试中心, 四川 成都 610091
基金项目:四川省院省校合作项目“四川盆地上二叠统海陆过渡相页岩气成藏条件研究(省院省校重大)”(2018JZ0003)
摘    要:页岩甲烷吸附能力是决定页岩气井开采方案的重要参数,对评估页岩气藏潜力意义重大。干酪根类型、总有机碳含量、矿物组成、成熟度和孔径等是影响页岩吸附性能的因素,但针对高温高压下过剩吸附现象对页岩甲烷吸附能力影响的研究还需开展进一步的探索。为揭示四川盆地东北地区五峰组页岩甲烷吸附能力,本文通过场发射扫描电镜、低温氮气吸附和高压甲烷吸附实验,研究了高温高压下页岩的甲烷吸附能力,并分析了页岩孔隙结构等对页岩吸附能力的影响。结果表明:①五峰组页岩孔隙结构非均质性强,发育有机孔隙、粒(晶)间孔隙、粒(晶)内孔隙和粒(晶)间溶孔等多种孔隙;②比表面积平均为19.1282m^2/g;孔体积平均为0.0195cm^3/g;孔径平均为5.2226nm;③修正后的饱和吸附气量为2.56m^3/t;④五峰组页岩甲烷吸附性能受控于比表面积、孔体积;有机质含量越大、有机质热演化程度越低,其甲烷吸附性能越强;⑤孔隙结构是影响页岩甲烷吸附能力的重要内因。同时指出低压条件下的实验吸附曲线不适合直接评价页岩甲烷吸附能力。

关 键 词:川东北  五峰组  页岩  甲烷  吸附能力  孔隙  超临界状态
收稿时间:2019/8/21 0:00:00
修稿时间:2019/9/10 0:00:00

Application of High-temperature Methane Adsorption Experiment to Study the Adsorption Capacity of Methane in Shales from the Wufeng Formation, Northeast Sichuan
ZHANG Ye-yu,CAO Qian,HUANG Yi,QI Ming-hui,LI Xiao-fu and LIN Dan.Application of High-temperature Methane Adsorption Experiment to Study the Adsorption Capacity of Methane in Shales from the Wufeng Formation, Northeast Sichuan[J].Rock and Mineral Analysis,2020,39(2):188-198.
Authors:ZHANG Ye-yu  CAO Qian  HUANG Yi  QI Ming-hui  LI Xiao-fu and LIN Dan
Institution:Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610091, China;Technical Innovation Center for Shale Gas Exploration and Development in Complex Structural Areas, Ministry of Natural Resources, Chengdu 610091, China;Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China,Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610091, China;Technical Innovation Center for Shale Gas Exploration and Development in Complex Structural Areas, Ministry of Natural Resources, Chengdu 610091, China;Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China,Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610091, China;Technical Innovation Center for Shale Gas Exploration and Development in Complex Structural Areas, Ministry of Natural Resources, Chengdu 610091, China;Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China,Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610091, China;Technical Innovation Center for Shale Gas Exploration and Development in Complex Structural Areas, Ministry of Natural Resources, Chengdu 610091, China;Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China,Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610091, China;Technical Innovation Center for Shale Gas Exploration and Development in Complex Structural Areas, Ministry of Natural Resources, Chengdu 610091, China;Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China and Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610091, China;Technical Innovation Center for Shale Gas Exploration and Development in Complex Structural Areas, Ministry of Natural Resources, Chengdu 610091, China;Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China
Abstract:BACKGROUND: Shale methane adsorption capacity is not only a significant parameter to determine the exploration and exploitation plan, but also a critical criterion to evaluate the potential of a shale gas reservoir. Types of kerogen, total organic carbon content, mineral composition, maturity, and pore size are factors that affect shale adsorption performance; however, not enough attention is being focused on the influence of excess adsorption under high temperature and high pressure on shale methane adsorption capacity.
OBJECTIVES: To reveal the influence of excess adsorption under high temperature and high pressure on the adsorption capacity of methane from the Wufeng Formation shale in Northeast Sichuan.
METHODS: Based on methods of field emission scanning electron microscopy, low-temperature nitrogen adsorption test, and high-pressure methane adsorption test, the shale methane adsorption capacity under high temperature and pressure was studied, and the influence of shale pore structure on the shale adsorption capacity was analyzed.
RESULTS: The types of pore structure in the Wufeng Formation shale were diverse, including organic, intergranular, intercrystalline, and intergranular dissolved pore. The average specific surface area was 19.1282m2/g, while average pore volume and pore diameters were 0.0195cm3/g and 5.2226nm, respectively. The corrected adsorption capacity of shale in the Wufeng Formation was 2.56m3/t. The Wufeng Formation shale methane adsorption performance was controlled by specific surface area and pore volume. The larger the organic matter content, the lower the thermal evolution of organic matter and the stronger its methane adsorption performance. Pore structure was an important internal factor affecting the shale methane adsorption capacity.
CONCLUSIONS: The experimental adsorption curve under low pressure is not suitable for directly evaluating the shale methane adsorption capacity.
Keywords:Northeast Sichuan  the Wufeng Formation  shale  methane  adsorption capacity  pore  supercritical state
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《岩矿测试》浏览原始摘要信息
点击此处可从《岩矿测试》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号