首页 | 本学科首页   官方微博 | 高级检索  
     

高分辨率遥感影像道路震害的快速提取
引用本文:刘明众,张景发,李成龙,刘国林. 高分辨率遥感影像道路震害的快速提取[J]. 地震, 2013, 33(2): 79-86
作者姓名:刘明众  张景发  李成龙  刘国林
作者单位:1.中国地震局地壳应力研究所, 北京 100085;
2.山东科技大学测绘科学与工程学院, 山东 青岛 266510
基金项目:国家高技术研究发展计划,高分光学卫星遥感应急技术研究
摘    要:震后及时获取道路受灾信息, 进行交通通行能力分析, 是抗震救灾的关键之一。 传统的利用遥感技术提取震害信息的方法普遍存在效率低的问题, 影响地震应急的时效性。 本文提出针对特定传感器影像的经验训练参数, 结合面向对象分类, 按照预处理、 影像分类、 震害识别这一流程实现道路震害的快速提取。 实验结果表明, 保障提取效果在一定精度范围内的情况下, 提取速度有明显提高, 有较高的实用意义。

关 键 词:高分辨率遥感影像  面向对象  C#与IDL混编  震害识别  
收稿时间:2012-12-20

Rapid Extraction of Road Damages from High Resolution Remote Sensing Images
LIU Ming-zhong , ZHANG Jing-fa , LI Cheng-long , LIU Guo-lin. Rapid Extraction of Road Damages from High Resolution Remote Sensing Images[J]. China Earthguake Engineering Journal, 2013, 33(2): 79-86
Authors:LIU Ming-zhong    ZHANG Jing-fa    LI Cheng-long    LIU Guo-lin
Affiliation:1. Institute of Crustal Dynamics, CEA, Beijing 100085, China;
2. Geomatics College, Shandong University of Science and Technology, Qingdao 266510, China
Abstract:After earthquake, it's a key for relief to access timely to road damage information and analyse traffic capacity. However, traditional method of using remote sensing technology to extract damage information has the problems of low efficiency, and affects the timeliness of earthquake emergency. In our daily training, we focus on a class of sensor images and get the most appropriate parameters, and combining the object-oriented classification, we propose a specific process including preprocessing, image classification, rapid road damage identification. Experimental results show that the method can improve obviously the extraction rate in keeping with a good of classification precision. So it is expected that the method will be applied with much practical uses.
Keywords:High resolution remote sensing image  Object-oriented classification   Road damage identification  
本文献已被 万方数据 等数据库收录!
点击此处可从《地震》浏览原始摘要信息
点击此处可从《地震》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号