首页 | 本学科首页   官方微博 | 高级检索  
     

层析反演与神经网络方法在电离层建模及预报中的应用
引用本文:陈必焰,戴吾蛟,蔡昌盛,夏朋飞. 层析反演与神经网络方法在电离层建模及预报中的应用[J]. 武汉大学学报(信息科学版), 2012, 37(8): 972-975,1013
作者姓名:陈必焰  戴吾蛟  蔡昌盛  夏朋飞
作者单位:中南大学测绘与国土信息工程系,长沙市麓山南路932号,长沙410083 湖南省精密工程测量与形变灾害监测重点实验室,长沙市麓山南路932号,长沙410083
基金项目:国家自然科学基金资助项目,中南大学前沿研究计划资助项目
摘    要:将香港地区某天由电离层层析反演得到的电子密度值分成6组,利用神经网络方法对该6组数据分别进行了拟合建模及预报。实验结果表明,采用电离层层析技术并经神经网络模型预报得出的电子密度值精度明显高于由IRI2007模型提供的电子密度值,其预报的30min及60min的电子密度值精度可分别达到0.45TECU和1.34TECU。

关 键 词:电离层层析  神经网络  电子密度值  GPS

Ionospheric Modeling and Forecasting Based on Tomographic and Neural Network Method
CHEN Biyan,DAI Wujiao,CAI Changsheng,XIA Pengfei. Ionospheric Modeling and Forecasting Based on Tomographic and Neural Network Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 972-975,1013
Authors:CHEN Biyan  DAI Wujiao  CAI Changsheng  XIA Pengfei
Affiliation:1,2(1 Department of Surveying Engineering & Geo-Informatics,Central South University, 932 South Lushan Road,Changsha 410083,China)(2 Key Lab of Precise Engineering Surveying & Deformation Disaster Monitoring of Hunan Province, 932 South Lushan Road,Changsha 410083,China)
Abstract:The electron density values of one day in Hong Kong obtained by ionospheric tomographic are divided into 6 groups.Then,the 6 groups data are fitted modeling and forecasting by neural network method.The results show that the accuracy of electron density value forecasted by the tomographic and neural network model is significantly higher than the electron density value provided by IRI2007 model.The precision of the electron density forecast value within 30 minutes and 60 minutes can respectively arrive at 0.45 TECU and 1.34 TECU.
Keywords:ionospheric tomographic  neural network  electron density value  GPS
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号