Abstract: | Slope stability assessment is a geotechnical problem characterized by many sources of uncertainty. Some of them, e.g., are connected to the variability of soil parameters involved in the analysis. Beginning from a correct geotechnical characterization of the examined site, only a complete approach to uncertainty matter can lead to a significant result. The purpose of this paper is to demonstrate how to model data uncertainty in order to perform slope stability analysis with a good degree of significance. Once the input data have been determined, a probabilistic stability assessment (first-order second moment and Monte Carlo analysis) is performed to obtain the variation of failure probability vs. correlation coefficient between soil parameters. A first result is the demonstration of the stability of first-order second moment (FOSM) (both with normal and lognormal distribution assumption) and Monte Carlo (MC) solutions, coming from a correct uncertainty modelling. The paper presents a simple algorithm (Fuzzy First Order Second Moment, FFOSM), which uses a fuzzy-based analysis applied to data processing. |