Abstract: | This paper presents a finite element approach to solve geotechnical problems with interfaces. The behaviours of interfaces obey the Mohr–Coulomb law. The FEM formulae are constructed by means of the principle of virtual displacement with contact boundary. To meet displacement compatibility conditions on contact boundary, independent degrees of freedom are taken as unknowns in FEM equations, instead of conventional nodal displacements. Examples on pressure distribution beneath a rigid strip footing, lateral earth pressure on retaining walls, behaviours of axially loaded bored piles, a shield‐driven metro tunnel, and interaction of a sliding slope with the tunnels going through it are solved with this method. The results show good agreement with analytical solutions or with in situ test results. Copyright © 2005 John Wiley & Sons, Ltd. |