首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-Regulating Supernova Heating in Interstellar Medium Simulations
Authors:Graeme R Sarson  Anvar Shukurov  Åke Nordlund  Boris Gudiksen  Axel Brandenburg
Institution:1. School of Mathematics & Statistics, University of Newcastle, Newcastle, NE1, U.K
2. NBIfAFG & TAC, Juliane Maries Vej 30, Copenhagen ?, Denmark
3. Institute Solar Physics, Royal Swedish Academy of Sciences, Stockholm, Sweden
4. NORDITA, Blegdamsvej 17, Copenhagen ?, Denmark
Abstract:Numerical simulations of the multi-phase interstellar medium have been carried out, using a 3D, nonlinear, magnetohydrodynamic, shearing-box model, with random motions driven by supernova explosions. These calculations incorporate the effects of magnetic fields and rotation in 3D; these play important dynamical roles in the galaxy, but are neglected in many other simulations. The supernovae driving the motions are not arbitrarily imposed, but occur where gas accumulates into cold, dense clouds; their implementation uses a physically motivated model for the evolution of such clouds. The process is self-regulating, and produces mean supernova rates as part of the solution. Simulations with differing mean density show a power law relation between the supernova rate and density, with exponent 1.7; this value is within the range suggested from observations (taking star formation rate as a proxy for supernova rate). The global structure of the supernova driven medium is strongly affected by the presence of magnetic fields; e.g. for one solution the filling factor of hot gas is found to vary from 0.19 (with no field) to 0.12 (with initial mid-plane field B 0 = 6 μG).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号