首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fe Isotope Compositions of Cyprus Umbers
Authors:Jian SUN  Xiangkun ZHU  Zhihong LI
Abstract:Submarine metalliferous sedimentary rocks are chemical precipitates resulted from hydrothermal exhalation near mid‐ocean ridge or faults. They record the submarine hydrothermal activity between lithosphere and hydrosphere and are critical for understanding Fe cycling in marine environment. Fe was expelled from the hydrothermal vent systems and was oxidized and precipitated in the ambient seawater, where the precipitation of hydrothermal Fe is largely controlled by oxidation state of seawater and is potentially revealed by its Fe isotope compositions. This hydrothermal process in modern hydrothermal vent systems have been well observed, but that for the ancient ones are still not well known. Umbers, or ferromanganoan sediments, overlying Troodos ophiolite in Cyprus of Mid‐Cretaceous age thus provides an excellent example for understanding the Fe cycles in ancient submarine hydrothermal process. Samples were collected from Margi village in Troodos and are mostly amorphous Fe‐Mn oxy‐hydroxides with very minor quartz, goethite, smectite and silicates such as clinopyroxene derived from the volcanic rocks. There is no terrestrial, detrital component. Samples were analyzed for their whole‐rock element and Fe isotope compositions. The results show that samples are composed mainly of SiO2 (13~80 wt%), Fe2O3 (9~54 wt%) and MnO (1.5~10.4 wt%), with minor Al2O3 (0.7~4.3 wt%). PAAS‐normalized REE patterns are near flat with significantly negative Ce anomalies (Ce/Ce* is from 0.2 to 0.5) and slightly positive Eu anomalies (Eu/Eu* is around 1.1), indicating a source from the oxidized seawater and the high‐temperature hydrothermal fluids. δ56FeIRMM‐014 values of samples are ‐0.32‰ to ‐0.15‰, with an average of ‐0.20‰, which are consistent with those of the hydrothermal fluids previously reported. The narrow Fe isotope compositions of Cyprus umbers that are close to those of submarine hydrothermal fluids indicates near complete oxidation of hydrothermal Fe2+ during its expulsion from the hydrothermal vent.
Keywords:
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号