首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的线性回归模型及其应用示例
作者姓名:陈璇  游小宝  郑崇伟  孙威  谢胜浪
作者单位:华东师范大学河口海岸学国家重点实验室,上海200062;中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京100029;解放军75839部队,广州510510;中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京,100029;华东师范大学河口海岸学国家重点实验室,上海200062;中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京100029;海军大连舰艇学院,辽宁省大连116018;陆军工程大学,南京,210007;解放军95080部队,广东省汕头,515049
基金项目:河口海岸学国家重点实验室开放基金SKLEC-KF201707,国家自然科学基金项目41490642、51709243
摘    要:回归分析是统计分析中常用的方法之一。传统的回归模型不具备全域分析能力,而变量场之间的关系多采用SVD(Singular Value Decomposition)进行分析,与传统的回归分析有所脱节。更为广义的线性回归模型是传统线性回归模型的延拓,在标量情况下,该模型可转化为传统线性回归模型。该模型的基本特征包含乘法不可互易性、等价于传统线性回归(因子项为标量时)、可分析性、延拓性、降维特征及容错性等。该模型解决了传统的线性回归模型不具备全域分析能力及模型表达能力受限于模型维数的现实问题。本文采用了NCEP(National Centers for Environmental Prediction)降水、高度场、风场月平均资料及国家气候中心西太平洋副热带高压指数资料,利用该模型和传统回归方案进行对比分析,分析结果表明,该模型具有一定的实用参考价值。

关 键 词:线性回归  统计  更为广义
收稿时间:2018-01-15
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载免费的PDF全文
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号