首页 | 本学科首页   官方微博 | 高级检索  
     检索      

An Adjoint-Free CNOP–4DVar Hybrid Method for Identifying Sensitive Areas in Targeted Observations: Method Formulation and Preliminary Evaluation
摘    要:This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and four-dimensional variational assimilation(4 DVar) methods. The proposed CNOP–4 DVar method is capable of capturing the most sensitive initial perturbation(IP), which causes the greatest perturbation growth at the time of verification; it can also identify sensitive areas by evaluating their assimilation effects for eliminating the most sensitive IP. To alleviate the dependence of the CNOP–4 DVar method on the adjoint model, which is inherited from the adjoint-based approach, we utilized two adjointfree methods, NLS-CNOP and NLS-4 DVar, to solve the CNOP and 4 DVar sub-problems, respectively. A comprehensive performance evaluation for the proposed CNOP–4 DVar method and its comparison with the CNOP and CNOP–ensemble transform Kalman filter(ETKF) methods based on 10 000 observing system simulation experiments on the shallow-water equation model are also provided. The experimental results show that the proposed CNOP–4 DVar method performs better than the CNOP–ETKF method and substantially better than the CNOP method.


An Adjoint-Free CNOP-4DVar Hybrid Method for Identifying Sensitive Areas in Targeted Observations: Method Formulation and Preliminary Evaluation
Authors:Xiangjun TIAN  Xiaobing FENG
Abstract:This paper proposes a hybrid method, called CNOP-4DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation (CNOP) and four-dimensional variational assimilation (4DVar) methods. The proposed CNOP-4DVar method is capable of capturing the most sensitive initial perturbation (IP), which causes the greatest perturbation growth at the time of verification; it can also identify sensitive areas by evaluating their assimilation effects for eliminating the most sensitive IP. To alleviate the dependence of the CNOP-4DVar method on the adjoint model, which is inherited from the adjoint-based approach, we utilized two adjoint-free methods, NLS-CNOP and NLS-4DVar, to solve the CNOP and 4DVar sub-problems, respectively. A comprehensive performance evaluation for the proposed CNOP-4DVar method and its comparison with the CNOP and CNOP-ensemble transform Kalman filter (ETKF) methods based on 10 000 observing system simulation experiments on the shallow-water equation model are also provided. The experimental results show that the proposed CNOP-4DVar method performs better than the CNOP-ETKF method and substantially better than the CNOP method.
Keywords:CNOP  4DVar  NLS-4DVar  targeted observations  sensitive area identification
本文献已被 CNKI 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号