首页 | 本学科首页   官方微博 | 高级检索  
     

综合线面特征分布的点目标多尺度聚类方法
引用本文:余莉,甘淑,袁希平,杨明龙. 综合线面特征分布的点目标多尺度聚类方法[J]. 测绘学报, 2015, 44(10): 1152-1159. DOI: 10.11947/j.AGCS2.0152.0150136
作者姓名:余莉  甘淑  袁希平  杨明龙
作者单位:昆明理工大学国土资源工程学院, 云南 昆明 650093
摘    要:考虑空间数据分布的复杂性与不连续性,提出了一种点目标聚类方法。算法利用全要素Voronoi图准确识别与表达点目标与线面实体的空间相关性;根据点目标位置分布特征计算面积阈值来控制聚类的粒度,同时以空间尺度变化下面积阈值的恒定作为判断尺度收敛的条件,实现点目标的多尺度划分,时间复杂度为O(nlogn)。经试验验证,聚类尺度随点目标分布特征自适应收敛,算法无须自定义参数,能够有效地发现受线面目标约束的任意形态点目标集群,对异常值处理稳健。

关 键 词:空间聚类  多尺度  全要素Voronoi图  约束  
收稿时间:2015-03-13
修稿时间:2015-07-07

Multi-scale Clustering of Points Synthetically Considering Lines and Polygons Di stri buti on
YU Li,GAN Shu,YUAN Xiping,YANG Minglong. Multi-scale Clustering of Points Synthetically Considering Lines and Polygons Di stri buti on[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1152-1159. DOI: 10.11947/j.AGCS2.0152.0150136
Authors:YU Li  GAN Shu  YUAN Xiping  YANG Minglong
Affiliation:Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract:Considering the complexity and discontinuity of spatial data distribution ,a clustering algorithm of points was proposed .To accurately identify and express the spati al correl ation among points ,lines and polygons ,a Voronoi di agram that is generated by all spati al features is introduced .According to the distribution characteristics of point’s position ,an area threshold used to control clustering granularity was calculated .Meanwhile ,judging scale convergence by constant area threshold ,the algorithm classifies spatial features based on multi‐scale ,with an O(nlogn ) running time .Results indicate that spatial scale converges self‐adaptively according with distribution of points .Without the custom parameters , the algorithm capable to discover arbitrary shape clusters which be bound by lines and polygons ,and is robust for outli ers .
Keywords:spatial clustering  multi-scale  Voronoi diagram of all features  constraints
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号