首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的试题库智能组卷系统研究
引用本文:朱玉祥,苗春生,孙承佼. 基于遗传算法的试题库智能组卷系统研究[J]. 南京气象学院学报, 2006, 29(2): 282-285
作者姓名:朱玉祥  苗春生  孙承佼
作者单位:1. 南京信息工程大学,大气科学系,江苏,南京,210044
2. 华南理工大学,应用数学系,广东,广州,510640
摘    要:采用自适应交叉率和变异率的生物遗传学算法,建立一个智能组卷的数学模型,并对该数学模型的编码方法和遗传操作进行了详细介绍和讨论。对该数学模型的应用求解表明,该方法是对以前的随机法和简单遗传算法组卷的一个显著改善。

关 键 词:适应度函数  自适应交叉率  自适应变异率  智能组卷
文章编号:1000-2022(2006)02-0282-04
收稿时间:2004-01-05
修稿时间:2004-01-052004-06-20

A Test Paper-Autogenerating System Based on Genetic Algorithm
ZHU Yu-xiang,MIAO Chun-sheng,SUN Cheng-jiao. A Test Paper-Autogenerating System Based on Genetic Algorithm[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(2): 282-285
Authors:ZHU Yu-xiang  MIAO Chun-sheng  SUN Cheng-jiao
Affiliation:1. Department of Atomospheric Science, NUIST, Nanjing 210044, China; 2. Department of Applied Mathematics, South China University of Technology, Guangzhou 510640, China
Abstract:An intelligent method to develop exam and quiz sheets for an online test system is presented in this paper.The intelligent method applies an adaptive crossover rate and mutation rate's biologic genetic algorithms to the question selection for exam and quiz sheets.The mathematic model consists of genetic iteration,sample adaptability function,mating probability,aberrance probability,optimum selection and error estimation.All details of the coding and operation of the model are shown in the paper,and the results of the experimental applications of the model are also discussed.The running time and error analysis show that the improved genetic algorithm is more satisfying compared with the traditional Simple Genetic Algorithm and Probability Method.In the paper some technique procedures and key skills for developing online test system are introduced,which are based on Personal Home Page(PHP) and database MySQL applications.
Keywords:fitness function  adaptive crossover rate  adaptive mutation rate   test paper-autogenerating
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号