首页 | 本学科首页   官方微博 | 高级检索  
     


A Parkes radio telescope study of giant pulses from PSR J1823–3021A
Authors:H. S. Knight
Affiliation:Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail #H39, PO Box 218, VIC 3122, Australia
Abstract:We report on 685-MHz observations of PSR J1823–3021A using the Parkes radio telescope. A total of 120 giant pulses (GPs) were found by searching for spiky emission at 16-μs time resolution. The energies of these pulses follow a power law that has a very steep exponent of −3.1. This means that the emission mechanism that gives rise to the GPs almost always produces pulses that only have moderate energies. The profile formed by adding all the GPs has components that are narrower and more widely separated than the profile formed from all pulses. Aberration and retardation of emission from a corotating volume mean that components emitted at high altitude will have asymmetric phases compared to those emitted at low altitude. By assuming that the components of the pulse profile form conal pairs, we use this effect to limit the GPs to be emitted no higher than 4 km above ordinary emission. The arrival times of the GPs are well modelled by Poisson statistics at time-scales around 100 s. We report a GP with spikes of emission at the phases of both components. The probability of two independent GPs occurring within a single pulse period is     , so an interpretation can be conjectured that the two pulses are not independent. This may mean that the magnetosphere can remain in a state that is susceptible to discrete 'giant' emission events for as long as 2 ms.
Keywords:pulsars: individual: J1823–3021A
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号