首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Eddy activity in the lee of the Hawaiian Islands
Authors:Paulo HR Calil  Kelvin J Richards  Yanli Jia  Robert R Bidigare
Institution:aDepartment of Oceanography, University of Hawaii at Manoa, USA;bInternational Pacific Research Center, University of Hawaii at Manoa, USA;cHawaii Institute of Marine Biology, University of Hawaii at Manoa, USA
Abstract:Persistent northeasterly trade winds have a substantial impact on the oceanic circulation around the Hawaiian Islands. A regional ocean model is applied to understand the effect of different temporal and spatial resolutions of surface momentum forcing on the formation of strong mesoscale vortices and on the simulation of realistic levels of eddy kinetic energy. The higher spatial and temporal resolutions of wind forcing is shown to substantially affect the vorticity and deformation field in the immediate lee of the Hawaiian Islands and produce patterns of eddy kinetic energy similar to observations. This suggests that the surface eddy field in the region is mostly dominated by the local surface momentum forcing. Mesoscale cyclones and anticyclones formed in the lee of the Island of Hawaii are shown to have different propagation patterns. Mesoscale cyclones are more confined to the lee and are hence subject to interactions with the strong wind forcing and deformation field as well as smaller vortices formed in the wake of the other islands. Mesoscale anticyclones show not only a tendency to propagate further westward, but also to persist as coherent features as they propagate, even at relatively lower values of relative vorticity. The large strain rates that affect the propagation of the cyclones cause them to break down into filaments of positive vorticity. Rossby numbers of O(1) within vortices and filaments indicate that nonlinear interactions between the wind stress and the vertical component of the relative vorticity field is potentially important in producing large vertical velocities. Modeled cyclonic eddies show a good resemblance to observations both in terms of vertical structure and propagation patterns.
Keywords:Mesoscale eddies  Wind forcing  Mesoscale circulation  Numerical modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号