首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传小波神经网络的海底声学底质识别分类
引用本文:熊明宽,吴自银,李守军,尚继宏. 基于遗传小波神经网络的海底声学底质识别分类[J]. 海洋学报, 2014, 36(5): 90-97. DOI: 10.3969/j.issn.0253-4193.2014.05.010
作者姓名:熊明宽  吴自银  李守军  尚继宏
作者单位:国家海洋局 第二海洋研究所, 浙江 杭州 310012;国家海洋局海底科学重点实验室, 浙江 杭州 310012
基金项目:国家海洋公益专项(201105001);科技基础性工作专项(2013FY112900);国家自然科学基金(40506017)。
摘    要:分割海底声纳探测图像,提取单元特征向量进行主成份分析,选取均值、标准差、对比度、相关系数、能量及同质性作为训练特征向量,构建小波神经网络。利用遗传算法优化小波神经网络的初始权值及小波参数,对砂、礁石、泥3种底质类型分别进行训练,并得到3种底质的测试精度都在90%以上,优于单独利用小波神经网络进行训练时的测试精度,克服了小波神经网络训练时易陷入局部极小的固有缺陷,表明基于遗传算法的小波神经网络可有效用于海底底质声纳图像的识别和分类。

关 键 词:遗传小波神经网络   底质分类   声纳图像   遗传算法   小波分析
收稿时间:2013-04-28
修稿时间:2013-10-16

Wavelet neural network identification and classification of sediment seabed sonar images based on genetic algorithms
Xiong Mingkuan,Wu Ziyin,Li Shoujun and Shang Jihong. Wavelet neural network identification and classification of sediment seabed sonar images based on genetic algorithms[J]. Acta Oceanologica Sinica (in Chinese), 2014, 36(5): 90-97. DOI: 10.3969/j.issn.0253-4193.2014.05.010
Authors:Xiong Mingkuan  Wu Ziyin  Li Shoujun  Shang Jihong
Affiliation:Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China;Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China
Abstract:Segmenting the seafloor sonar gray image,and extracting characteristic vector unit with principal component analysis,the selection of the mean,standard deviation,contrast,correlation coefficient,energy and homogeneity is as training characteristic vector,to build wavelet neural network. Using genetic algorithm to optimize the wavelet neural network initial weights and wavelet parameters,the three of sediment types sand,rocks,mud were been training,and get three sediment test accuracy of 90% or more,far better than single wavelet neural network training test accuracy. Experiments show that wavelet neural network based on genetic algorithm can be effectively used for seabed sediment sonar image recognition and classification,and overcome that the wavelet neural network training shortcomings easy to fall into local minimum.
Keywords:genetic algorithm-wavelet neural network  sediment classification  sonar gray image  genetic algorithm  wavelet analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号