首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of spatial resolution on the simulation of upper-tropospheric frontogenesis using a sigma-coordinate primitive equation model
Authors:M J Pecnick  D Keyser
Institution:(1) General Sciences Corporation, Laurel, Maryland, USA;(2) Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Code 612, 20771 Greenbelt, Maryland, USA;(3) Present address: CENTEL Federal Services Corporation, Reston, Virginia, USA;(4) Present address: Department of Atmospheric Science, State University of New York at Albany, Albany, New York, USA
Abstract:Summary The effects of varying horizontal and vertical grid resolution on the numerical simulation of upper-tropospheric frontal structures are examined using a, two-dimensional, dry, hydrostatic sigma-coordinate primitive equation model. These effects are illustrated with the results of 72 h model integrations in which frontogenesis is forced solely by confluence. Four different horizontal grid spacings, ranging from 100 km to 12.5 km, and four different vertical, grid resolutions, varying from 10 to 70 layers (sim90 mb to 13 mb), are considered.The intensity and integrity of the frontogenesis as a function of grid resolution are diagnosed in terms of time histories and spatial distributions of frontal parameters, such as the speed of the along-front jet, maxima of absolute vorticity and potential temperature gradient, and ageostrophic motions. The time histories show that, provided the vertical resolution is sufficient, increasing horizontal resolution leads to better-defined frontal structure due to the decrease in cross-frontal scale. They also indicate that for a given horizontal resolution there exists an optimal vertical resolution beyond which frontal parameters change only slightly. This optimal vertical resolution increases with increasing horizontal resolution, and apparently is related to the horizontal resolution through the slope of the frontal zone.The time histories for simulations combining low vertical resolution with high horizontal resolution exhibit substantial high-frequency variability. Cross sections show that this temporal variability appears to be manifested spatially in the form of gravity waves characterized by wavelengths on the order of 200 km and periods of 12 h, over the range of horizontal and vertical resolution that is considered. Although the source mechanism for these waves cannot be established definitively, it likely involves a grid-induced ageostrophic component of the along-front wind which disrupts thermal wind balance. This results thus demonstrates the potential risk of flawed frontal simulations, when incompatible combinations of horizontal and vertical resolution are used.With 7 Figures
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号