首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correlation-based decision-feedback equalizer for underwater acoustic communications
Authors:Yang  TC
Institution:Naval Res. Lab., Washington, DC, USA;
Abstract:The purpose of this paper is to develop a decision-feedback equalizer (DFE) using a fixed set of parameters applicable to most shallow oceans with minimal user supervision (i.e., a turn key system). This work is motivated by the superior performance bit error rate (BER)] of the multichannel DFE compared with other methods, such as passive-phase conjugation (PPC), at the same time noting its sensitivity to different acoustic environments. The approach is to couple PPC, utilizing its adaptability to different environments, with a single-channel DFE. This coupling forms an optimal processor for acoustic communications in theory, but it has never been implemented in practice. By coupling with DFE, the method achieves the same spatial diversity as conventional multichannel DFE, without requiring a large number of receivers as does PPC. The correlation-based DFE in terms of the autocorrelation functions of the channel impulse responses summed over the receiver channels (the Q function) is derived. This paper shows in terms of waveguide physics, further supported by real data, the many desirable features of the Q function that suggest, given adequate sampling of the water column, a general applicability of the correlation-based equalizer to different environments, irrespective of the sound speed profiles, bottom properties, and source-receiver ranges/depths. This property can be expected to hold approximately for a small number of receivers with spatial diversity. This paper demonstrates the robustness of the new equalizer with moving source data despite the range change (which modifies the impulse response) and symbol phase change due to time-varying Doppler.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号