首页 | 本学科首页   官方微博 | 高级检索  
     


Intermediate disturbance and patterns of species richness
Authors:Jacob Bendix  John J. Wiley Jr.  Michael G. Commons
Affiliation:1. Department of Geography, Syracuse University, Syracuse, NY, USAjbendix@syr.edu;3. Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA;4. Department of Geography, Syracuse University, Syracuse, NY, USA
Abstract:Abstract

The intermediate disturbance hypothesis (IDH) predicts highest species diversity in environments experiencing intermediate intensity disturbance, after an intermediate timespan. Because many landscapes comprise mosaics with complex disturbance histories, the theory implies that each patch in those mosaics should have a distinct level of diversity reflecting the magnitude of disturbance and the time since it occurred. We model changing patterns of species richness across a landscape experiencing varied scenarios of simulated disturbance in order to predict first the variation of richness through time in individual patches, based on their disturbance histories, and then the changing patterns of richness across the landscape through time, representing the cumulative impact of changing richness within the individual patches. Model outputs show that individual landscape patches have highly variable species richness through time, with the trajectory reflecting the timing, intensity and sequence of disturbances. When the results are mapped across the landscape, the resulting temporal and spatial complexity reveals a distribution of biodiversity that is strikingly contingent on the details of disturbance history. These results illustrate the danger of generalization (in either data interpretation or management decisions), as IDH actually imposes a highly variable pattern of diversity.
Keywords:Intermediate disturbance hypothesis  biodiversity  disturbance history  unimodal response  contingency
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号