首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure
Authors:Nico P de Koker  Lars Stixrude  Bijaya B Karki
Institution:a Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
b Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
c Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA
Abstract:We perform first principles molecular dynamics simulations of Mg2SiO4 liquid and crystalline forsterite. On compression by a factor of two, we find that the Grüneisen parameter of the liquid increases linearly from 0.6 to 1.2. Comparison of liquid and forsterite equations of state reveals a temperature-dependent density crossover at pressures of ∼12-17 GPa. Along the melting curve, which we calculate by integration of the Clapeyron equation, the density crossover occurs within the forsterite stability field at P = 13 GPa and T = 2550 K. The melting curve obtained from the root mean-square atomic displacement in forsterite using the Lindemann law fails to match experimental or calculated melting curves. We attribute this failure to the liquid structure that differs significantly from that of forsterite, and which changes markedly upon compression, with increases in the degree of polymerization and coordination. The mean Si coordination increases from 4 in the uncompressed system to 6 upon twofold compression. The self-diffusion coefficients increase with temperature and decrease monotonically with pressure, and are well described by the Arrhenian relation. We compare our equation of state to the available highpressure shock wave data for forsterite and wadsleyite. Our theoretical liquid Hugoniot is consistent with partial melting along the forsterite Hugoniot at pressures 150-170 GPa, and complete melting at 170 GPa. The wadsleyite Hugoniot is likely sub-liquidus at the highest experimental pressure to date (200 GPa).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号