Geochemical characteristics of the Paleogene shales in the Dongying depression,eastern China |
| |
Affiliation: | 1. Graduate School of Natural and Applied Sciences, Ankara University, Keçiören, 06110 Ankara, Turkey;2. Department of Geological Engineering, Ankara University, Tandoğan, 06100 Ankara, Turkey |
| |
Abstract: | Fluctuations in lacustrine sedimentary environments significantly affect distributions of organic matter (OM), uranium, and other elements in shales. In this study a high-resolution geochemical record of fluctuations in the paleo-depositional environment of a terrestrial lake basin is provided on the basis of extensive samples collected from the Member 3 of the Paleogene Shahejie Formation (Es3) of the Niu-38 well in the Dongying Depression, Eastern China. These samples were tested for total organic carbon (TOC), element concentrations, and biomarkers to study the evolution and fluctuation in the depositional environments of an ancient lake basin and associated geochemical response. The evolution and fluctuation of the sedimentary environment from a deep lake to a semi-deep lake and then to a shallow lake delta were indicated by geochemical response. During this evolution, the values of TOC, S1, S2, Sr, and Ts/(Ts + Tm) remarkably decreased, whereas those of Co, Ni, Rb, Na, Fe/Mn, Fe/(Ca + Mg), and C29 mortane/C29 hopane significantly increased. The deep lake basin shows depositional fluctuations, as indicated by rock lithofacies and their geochemical parameters. A close interrelationship was observed among U concentration, TOC content, and inorganic element content. Uranium concentrations are positively correlated with TOC contents, Ca and Sr concentrations, and Sr/Ba and Ca/Mg ratios but negatively with K, Na, Ba, and Rb contents and Fe/(Ca + Mg) and Fe/Mn ratios. The observed increase in U concentration in the lower Es3 section is closely related to surface adsorption by clay minerals and OM, together with some replacements of Ca and Sr by U in the shales. |
| |
Keywords: | Shale Biomarker Source rock Sedimentary environment Organic matter Uranium Lake basin |
本文献已被 ScienceDirect 等数据库收录! |
|