Abstract: | Observations have been made of the ice-crystal morphology of snow which fell at two sampling sites during a warm front followed by a cold front in the Sierra Nevada of the western United States. The snow sampling and ice crystal observations were conducted at Kingvale (KV) and Hobart Mills (HM), California, which are located at almost identical elevations on the upwind and down wind sides of the Sierra Nevada crest, respectively.These observations and several mesoscale features of one of the storms, have been used to study the substantial changes which occurred in the stable oxygen isotopic composition (δ18O) of the precipitation at the two sites.At the beginning of the period of observation, a low level warm front lay across the region and its elevation lowered with time from 2.5 km to 1.7 km. This decrease of the frontal surface height was accompanied by a steady increase in the δ18O values.In the pre-cold frontal passage time periods, the δ18O values at the upwind site signified warmer origin ice crystal morphology than the downwind site. This is explained by orographic effects and the production of supercooled liquid water at low elevations on the upslope side of the Sierra Nevada.During the passage of the surface cold front, the differences in δ18O at the two sites were quite small probably because the orography plays a less significant role in the precipitation production process during such events.The δ18O peaked around −13% which translates to an “equivalent temperature” of −10.7°C for ice phase water capture at the upwind site KV. At site HM downwind of the Sierra crest, and 25 km east of KV, the weighted mean ice phase water capture occurred at elevations some 5 to 6°C colder than at KV, because of subsidence and loss of supercooled liquid water in the lower elevations on the lee side. |