首页 | 本学科首页   官方微博 | 高级检索  
     


Sulphide inclusions in diamonds from the Koffiefontein kimberlite, S Africa: constraints on diamond ages and mantle Re–Os systematics
Authors:D.G. Pearson   S.B. Shirey   J.W. Harris  R.W. Carlson
Affiliation:

a Department of Geological Sciences, Durham University, South Road, Durham DH1 3LE, UK

b Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, DC, USA

c Department of Geology and Applied Geology, The University, Glasgow G12 8QQ, UK

Abstract:Re–Os isotope compositions of syngenetic sulphide inclusions in both eclogite suite (E-type) and peridotite suite (P-type) parageneses in diamonds from the Koffiefontein mine, South Africa have been analysed using a technique capable of analysing single inclusion grains, or, in some cases multiple inclusions from the same diamonds. Sulphide inclusion Ni contents broadly correlate with Os abundances in that low-Ni (6.8–8.7% Ni), E-type sulphides have 4.7 to 189 ppb Os whereas the two high-Ni (25%), P-type sulphides have 5986 and 6097 ppb Os. Two P-type sulphides from the same diamond define the first mineral isochron obtained for a single diamond which has an age of 69±30 Ma with chondritic initial 187Os/188Os. This indicates that the sulphides, and hence the host diamond, crystallised close to the time of kimberlite emplacement (90 Ma), in the Mesozoic. This is supported by Pb isotopic measurements of a fragment from one of the sulphides, together with the absence of significant Type IaB nitrogen aggregation in the host diamond lattice. E-type sulphide inclusions have radiogenic Os isotopic compositions, 187Os/188Os 0.346 to 2.28, and Re–Os model ages from 1.1 to 2.9 Ga. They define an array on a Re–Os isochron diagram that may be interpreted as defining a single period of E-type sulphide growth at 1.05±0.12 Ga, with an elevated initial 187Os/188Os. Alternatively, two episodes of sulphide crystallisation, from a chondritic reservoir, may be invoked in the Archaean and in the Proterozoic. The results for both P- and E-type diamonds point to a spectrum of diamond crystallisation ages. High contents of both Re and Os, and the similarity of Re/Os ratios of sulphide inclusions in diamonds to whole rock eclogite and peridotite xenoliths indicate that small amounts of sulphides can dominate the mantle budget of both these elements during melting. Recent addition to the lithospheric mantle of high-Os material similar to that from which the P-type sulphides crystallised may explain the variable, sometimes young Os model ages seen in whole rock xenolith Re–Os data.
Keywords:Re/Os   isotopes   diamonds   geochronology   sulfides   inclusions   kimberlite
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号