Petrology and geochemistry of A-type granites from Khanak and Devsar areas of Bhiwani district,southwestern Haryana |
| |
Authors: | Radhika Sharma Naresh Kumar |
| |
Affiliation: | 1.Department of Geology,Kurukshetra University,Kurukshetra,India |
| |
Abstract: | Petrological and geochemical characteristics of the granites from the Khanak and Devsar areas have been discussed in this paper. Based on field, petrographical and geochemical observations, three types of granites (grey, green and pink granite) have been identified in these areas. Grey granites consist of quartz, plagioclase, biotite, hornblende as essential minerals and hematite, zircon, annite, monazite & rutile as accessory minerals. Petrographically, green granites are same as grey granites including perthite and zircon as accessory minerals. Pink granites consist of quartz, k-feldspar and biotite in Khanak whereas in Devsar granites alike as Khanak granites, but plagioclase is replaced by perthite and occurs as dominantly. Microscopically, granites of both areas show porphyritic, hypidiomorphic, granophyric, perthitic and micro granophyric textures. Geochemically, major oxide elements (except alkalies) and trace elements (Ba, Sr, Cr, Ni, V, Cu, Zn, Ga, Pb, Th and Zr) are more in green and grey granites of Khanak and Devsar areas than pink granites. Generally, they show enrichments in SiO2, Na2O+K2O, Fe/Mg, Rb, Zr, Y and and AI (Agpaitic Index) (ranges from 0.10 to 1.18) and depletion in MgO, CaO, P, Ti, Ni, Cr and V indicate their A-type affinity which is very similar to the A-type granites of MIS (Malani igneous suite) in northwestern peninsular India. Green and grey granites of Devsar area show high concentrations of Heat production (HP) 9.68 & 11.70 μWm-3 and total Heat Generation Unit (HGU) i.e 23.04 & 27.86 respectively. On the other hand, pink granites of Khanak area display a higher enrichment of HP (16.53 μWm-3) and HGU (39.37) than those granites of Devsar area. Overall, they have much a higher values of HP and HGU than the average value of continental crust (3.8 HGU), which imply a possible linear relationship with the surface heat flow and crustal heat generation in the rocks of MIS. From the petrography as well as the chemistry of Khanak and Devsar granites, it is suggested that they might have derived from the different degree of partial melting from the similar source of magma. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|