Geodynamic Information in Peridotite Petrology |
| |
Authors: | HERZBERG CLAUDE |
| |
Affiliation: | DEPARTMENT OF GEOLOGICAL SCIENCES, RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ 08903, USA |
| |
Abstract: | Systematic differences are observed in the petrology and majorelement geochemistry of natural peridotite samples from thesea floor near oceanic ridges and subduction zones, the mantlesection of ophiolites, massif peridotites, and xenoliths ofcratonic mantle in kimberlite. Some of these differences reflectvariable temperature and pressure conditions of melt extraction,and these have been calibrated by a parameterization of experimentaldata on fertile mantle peridotite. Abyssal peridotites are examplesof cold residues produced at oceanic ridges. High-MgO peridotitesfrom the Ronda massif are examples of hot residues producedin a plume. Most peridotites from subduction zones and ophiolitesare too enriched in SiO2 and too depleted in Al2O3 to be residues,and were produced by meltrock reaction of a precursorprotolith. Peridotite xenoliths from the Japan, Cascades andChilePatagonian back-arcs are possible examples of arcprecursors, and they have the characteristics of hot residues.Opx-rich cratonic mantle is similar to subduction zone peridotites,but there are important differences in FeOT. Opx-poor xenolithsof cratonic mantle were hot residues of primary magmas with1620% MgO, and they may have formed in either ancientplumes or hot ridges. Cratonic mantle was not produced as aresidue of Archean komatiites. KEY WORDS: peridotite; residues; fractional melting; abyssal; cratonic mantle; subduction zone; ophiolite; potential temperature; plumes; hot ridges |
| |
Keywords: | : peridotite residues fractional melting abyssal cratonic mantle subduction zone ophiolite potential temperature plumes hot ridges |
本文献已被 Oxford 等数据库收录! |
|