首页 | 本学科首页   官方微博 | 高级检索  
     

模拟退火粒子群与小波的地基沉降预测应用
引用本文:吴瑞海,贺军衔,段琪庆,董吉文. 模拟退火粒子群与小波的地基沉降预测应用[J]. 测绘科学, 2010, 35(6)
作者姓名:吴瑞海  贺军衔  段琪庆  董吉文
作者单位:1. 济南大学信息科学与工程学院,济南,250022
2. 山东潍坊市勘察测绘研究院,山东,潍坊,261041
3. 济南大学土木建筑学院,济南,250022
摘    要:
针对粒子群优化算法易陷入局部极小值问题,改进学习因子使其自适应调整,并与具有良好全局搜索能力的模拟退火算法结合,充分利用两种算法各自的优点,同时结合小波分析去噪,优化神经网络参数,对地基累计沉降数据进行预测,并与标准粒子群优化算法做了对比,实验表明两种方法的结合具有良好的全局和局部搜索能力,预测精度高。

关 键 词:小波分析  粒子群优化算法  模拟退火  地基沉降  预测

Forecast application of foundation settlement using simulated annealing particle swarm and wavelet algorithm
WU Rui-hai,HE Jun-xian,DUAN Qi-qing,DONG Ji-wen. Forecast application of foundation settlement using simulated annealing particle swarm and wavelet algorithm[J]. Science of Surveying and Mapping, 2010, 35(6)
Authors:WU Rui-hai  HE Jun-xian  DUAN Qi-qing  DONG Ji-wen
Abstract:
In dealing with the problem that particle swarm optimization (PSO) easily falls into local optima,the learn factor was adjusted adaptively firstly in the paper.Secondly the authors combined with the simulated annealing algorithm which has a better global searching ability to improve the global and local searching ability.Thirdly this composite optimization algorithm with wavelet was used to optimize neural network parameter to forecast the foundation settlement.Then a comparison with the standard particle swarm optimization algorithm was made.Finally an experiment indicated that this composite optimization algorithm had good ability to global and local search the optima with high predictive precision.
Keywords:wavelet analysis  particle swarm optimization  simulated annealing  foundation settlement  prediction
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号