首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于高斯马尔可夫随机场的异常目标探测方法
引用本文:杜博,陈勇,史瑞芝. 一种基于高斯马尔可夫随机场的异常目标探测方法[J]. 测绘科学, 2010, 35(6): 180-182,154
作者姓名:杜博  陈勇  史瑞芝
作者单位:武汉大学计算机学院,武汉,430079;海军工程大学,武汉,430033;武汉大学测绘遥感信息工程国家重点实验室,武汉,430079;信息工程大学测绘学院,郑州,450052
摘    要:
利用高斯马尔可夫随机场模型描述像元的邻域相关性信息,并将这种邻域信息引入到局域异常探测器中,提出了一种顾及邻域信息的高光谱遥感影像局域异常目标探测算法。实验证明,该方法克服了传统异常探测方法仅仅利用光谱信息的不足,比经典的RX算法的探测效果更好,并且可以更有效地探测出大于一个像元的异常目标。

关 键 词:高斯马尔可夫随机场  异常探测  RX算法

An anomaly detection method based on gauss markov random field
DU Bo,CHEN Yong,SHI Rui-zhi. An anomaly detection method based on gauss markov random field[J]. Science of Surveying and Mapping, 2010, 35(6): 180-182,154
Authors:DU Bo  CHEN Yong  SHI Rui-zhi
Abstract:
This paper presented an anomaly detection method based on Gauss Markov Random Field model in order to introduce the spatial information between the neighborhood pixels in the hyperspectral imagery into the anomaly detection procedure.In this method,the neighborhood relationshi Pof the pixels in the hyperspectral imagery was described by the Gauss Markov Random Field (GMRF) model.Then this neighborhood relationshi Pinformation between pixels was introduced into the local-region anomaly detector which uses a nested dual window to detect probable anomaly pixels.Experiments showed that this method performs better than the traditional RX-algorithm,especially for the larger anomaly targets which usually contain several neighborhood pixels.
Keywords:Gauss Markov Random Field  anomaly detection  RX-algorithm
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号