首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of river damming on biogenic silica turnover: implications for biogeochemical carbon and nutrient cycles
Authors:Nan Ma  Zhaoliang Song  Baoli Wang  Fushun Wang  Xiaomin Yang  Xiaodong Zhang  Qian Hao  Yuntao Wu
Institution:1.Institute of the Surface-Earth System Science Research,Tianjin University,Tianjin,China;2.School of Environmental and Chemical Engineering,Shanghai University,Shanghai,China
Abstract:Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon (Si), carbon (C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica (BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si, C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号