首页 | 本学科首页   官方微博 | 高级检索  
     

利用ICA正交子空间投影加权的高光谱影像目标探测算法
引用本文:王凯, 舒宁, 李亮, 龚龑. 利用ICA正交子空间投影加权的高光谱影像目标探测算法[J]. 武汉大学学报 ( 信息科学版), 2013, 38(4): 440-444.
作者姓名:王凯  舒宁  李亮  龚龑
作者单位:1武汉大学遥感信息工程学院,武汉市珞喻路129号,430079)(2武汉大学测绘遥感信息工程国家重点实验室,武汉市珞喻路129号,430079
基金项目:国家973计划资助项目,中央高校基本科研业务费专项资金资助项目
摘    要:提出了一种利用独立成分分析(ICA)正交子空间投影加权的高光谱影像目标探测方法。该方法从影像像元集合的独立成分入手,通过一种光谱相似性测度加权,赋予每个像素合适的权值,从而有效地解决从原始影像中无法正确提取背景数据而造成的虚警概率高的问题。实验结果表明,相比于经典的CEM方法,在相同的探测概率下,该方法能降低1.97%的虚警概率;与相关目标探测算法相比,所提出的算法具有较好的目标探测效果。

关 键 词:独立成分分析  正交子空间投影  光谱相似性测度加权  高光谱影像
收稿时间:2013-03-14
修稿时间:2013-04-05

Weighted Hyperspectral Image Target Detection Algorithm Based on ICA Orthogonal Subspace Projection
WANG Kai, SHU Ning, LI Liang, GONG Yan. Weighted Hyperspectral Image Target Detection Algorithm Based on ICA Orthogonal Subspace Projection[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 440-444.
Authors:WANG Kai  SHU Ning  LI Liang  GONG Yan
Affiliation:1School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)(2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
Abstract:Hyperspectral data contained over hundreds of narrow contiguous wavelength bands are extremely suitable for target detection due to their high spectral resolution. In the target detection for hyperspectral image, the background data are not well represented from the original data sources. We propose a weighted hyperspectral image target detection algorithm based on independent component analysis orthogonal subspace projection(ICA|OSP). The methods start from a collection of independent component of the image pixels, through a spectral similarity measure weighted so that each pixel to give the appropriate weights. It can effectively solve the problems that can not correctly extract the background data from the original image. The problem usually causes a higher false alarm probability. AVIRIS hyperspectral image simulation and detection algorithms are compared by ROC curves with the relevant target detection algorithm, and the results show that the proposed algorithm can reduce the false alarm probability, to better target detection effects.
Keywords:independent component analysis  orthogonal subspace projection  spectral similarity measure weighted  hyperspectral image
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号