首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A time-domain prediction method of ship motions
Authors:DX Zhu  M Katory
Institution:Department of Civil &; Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Abstract:A time-domain analysis is used to predict wave loading and motion responses for a ship traveling at a constant speed in regular oblique waves. Considered as a distribution of normal velocities on the wetted hull surface, the combined diffraction and radiation perturbations caused by the forward moving ship and her motions are determined simultaneously. This way, the ship-hull boundary condition is exactly fulfilled. The 3-D time domain Green's function is used to express the combined diffraction/radiation potential in terms of impulsive and memory potentials. Application of the Bernoulli equation yields the pressure distribution and accordingly, the necessary hydrodynamic forces. The equations of motion of the ship are then developed and solved in the time domain.Forces and motions at forward speed are predicted for a Wigley ship-hull in head waves and for a catamaran-ferry in oblique waves. Comparison is made with published theoretical and experimental results for the Wigley ship-hull, and the agreement is good. For the catamaran, a self-propelled model is built and tested both in a large towing tank and in a seakeeping basin in order to measure the six-degrees-of-freedom forces, moments and motions at forward speed in regular waves of different directions. For the longitudinal motions, the agreement between measurements and predictions is generally good. For the transverse motions, however, acceptable discrepancy exists. The discrepancy is thought to be mainly due to the exclusion from the analysis of the rudder forces and viscous damping. The inclusion of such nonlinear effects in the time domain simulation involves complex analysis and this problem is left to a future research.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号