首页 | 本学科首页   官方微博 | 高级检索  
     


On the number of isolating integrals in systems with three degrees of freedom
Authors:Claude Froeschle
Affiliation:1. Observatoire de Nice, Le Mont-Gros, 06, Nice, France
Abstract:Dynamical systems with three degrees of freedom can be reduced to the study of a fourdimensional mapping. We consider here, as a model problem, the mapping given by the following equations: $$left{ begin{gathered} x_1 = x_0 + a_1 {text{ sin (}}x_0 {text{ + }}y_0 {text{)}} + b{text{ sin (}}x_0 {text{ + }}y_0 {text{ + }}z_{text{0}} {text{ + }}t_{text{0}} {text{)}} hfill y_1 = x_0 {text{ + }}y_0 hfill z_1 = z_0 + a_2 {text{ sin (}}z_0 {text{ + }}t_0 {text{)}} + b{text{ sin (}}x_0 {text{ + }}y_0 {text{ + }}z_{text{0}} {text{ + }}t_{text{0}} {text{) (mod 2}}pi {text{)}} hfill t_1 = z_0 {text{ + }}t_0 hfill end{gathered} right.$$ We have found that as soon asb≠0, i.e. even for a very weak coupling, a dynamical system with three degrees of freedom has in general either two or zero isolating integrals (besides the usual energy integral).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号