首页 | 本学科首页   官方微博 | 高级检索  
     

中国区域TanDEM-X 90 m DEM高程精度评价及其适用性分析
引用本文:於佳宁,刘凯,张冰玥,黄滢,范晨雨,宋春桥,汤国安. 中国区域TanDEM-X 90 m DEM高程精度评价及其适用性分析[J]. 地球信息科学学报, 2021, 23(4): 646-657. DOI: 10.12082/dqxxkx.2021.200450
作者姓名:於佳宁  刘凯  张冰玥  黄滢  范晨雨  宋春桥  汤国安
作者单位:1.南京师范大学强化培养学院,南京 2100232.中国科学院南京地理与湖泊研究所 流域地理学重点实验室,南京 2100083.南京师范大学地理科学学院,南京 2100234.河南理工大学测绘与国土信息工程学院,焦作 454000
基金项目:中国科学院战略性先导科技专项子课题(XDA23100102);国家自然科学基金项目(41801321);国家自然科学基金项目(41971403);国家自然科学基金项目(41930102)
摘    要:数字高程模型(Digital Elevation Model,DEM)是地球表层系统科学相关研究的基础数据,DEM数据精度的定量评价对科学选择DEM数据源、量化数据误差的影响等具有重要意义.在目前全球尺度可免费获取的DEM数据中,2018年发布的TanDEM-X 90 m DEM(TanDEM-X 90)数据凭借其较好...

关 键 词:数字高程模型  TanDEM-X 90 m DEM  精度评价  误差空间分布  适用性分析  ICESat/GLAS  ALOS AW3D30  SRTM-3 DEM
收稿时间:2020-08-08

Vertical Accuracy Assessment and Applicability Analysis of TanDEM-X 90 m DEM in China
YU Jianing,LIU Kai,ZHANG Bingyue,HUANG Ying,FAN Chenyu,SONG Chunqiao,TANG Guoan. Vertical Accuracy Assessment and Applicability Analysis of TanDEM-X 90 m DEM in China[J]. Geo-information Science, 2021, 23(4): 646-657. DOI: 10.12082/dqxxkx.2021.200450
Authors:YU Jianing  LIU Kai  ZHANG Bingyue  HUANG Ying  FAN Chenyu  SONG Chunqiao  TANG Guoan
Affiliation:1. Honors College, Nanjing Normal University, Nanjing 210023, China2. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China3. School of Geography,Nanjing Normal University, Nanjing 210023, China4. College of Surveying and Geotechnical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Abstract:Digital Elevation Model (DEM) is the basic data of studies on monitoring earth surface status and processes. Accuracy assessment of DEM is of great importance in selecting the optimal dataset and estimating the influences caused by DEM errors. Among all the open-access DEM data at a global scale, TanDEM-X 90 m DEM (termed as TanDEM-X 90 hereafter), released in 2018, has attracted widespread attention due to its good performance demonstrated by recent studies. However, few studies focus on the accuracy assessment of TanDEM-X 90 at a large scale, lacking the knowledge of its overall accuracy and the spatial distribution of error influencing factors. In this study, ICESat/GLAS altimetry data was used as basic reference data while SRTM-3 DEM and AW3D30 DEM were used for comparison. Using statistical parameters of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), skewness, and kurtosis, this study investigated the statistical characteristics and spatial distribution patterns of TanDEM-X 90 errors across mainland China. This study also explored the impacts of elevation, slope, geomorphic type, and land cover to DEM vertical accuracy and further analyzed the applicability of TanDEM-X 90. The results indicated that: ① MAE and RMSE of TanDEM-X 90 in China are 4.31 m and 7.87 m, respectively. The overall accuracy of TanDEM-X 90 is close to that of SRTM-3 (MAE=4.72 m, RMSE=7.71 m), but obviously poorer than AW3D30 (MAE=2.69 m, RMSE=4.17 m). ② TanDEM-X 90 achieves the highest accuracy among the three DEMs when the slope is smaller than four degrees. ③ TanDEM-X 90 has better performance than SRTM-3 in three types of landforms, plains, hills, and terraces. ④ Furthermore, the spatial distributions of vertical error of TanDEM-X 90 by watershed were also represented at a national scale, which can provide a beneficial reference for the data applications. In addition, TanDEM-X 90 has been proved to be better in depicting the recent elevation changes of land surface affected by human activities because of its advantages in data acquisition time. For areas with obvious artificial reconstruction such as mining districts, the appropriate time phase of the data according to the research objectives is more important than the difference in data accuracy. This study also found that there are obvious outliers in the TanDEM-X 90 data of the existing version, which restricts the regional availability of the data. Further improvement of this data is the focus of future researches.
Keywords:Digital Elevation Model (DEM)  TanDEM-X 90 m DEM  accuracy assessment  spatial distribution of errors  applicability analysis  ICESat/GLAS  ALOS AW3D30  SRTM-3 DEM  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号