首页 | 本学科首页   官方微博 | 高级检索  
     

基于Bayes网络的多粒度时空对象地理过程演化建模——以新安江模型为例
引用本文:张正方,闫振军,王增杰,傅蓉,罗文,俞肇元. 基于Bayes网络的多粒度时空对象地理过程演化建模——以新安江模型为例[J]. 地球信息科学学报, 2021, 23(1): 124-133. DOI: 10.12082/dqxxkx.2021.200426
作者姓名:张正方  闫振军  王增杰  傅蓉  罗文  俞肇元
作者单位:1.南京师范大学 虚拟地理环境教育部重点实验室,南京 2100232.江苏省地理环境演化国家重点实验室培育建设点,南京 2100233.江苏省地理信息资源开发与利用协同创新中心,南京 210023
基金项目:国家重点研发计划项目课题;国家自然科学基金项目
摘    要:多粒度时空对象具有多粒度、多类型、多形态、多参照系、多元关联、多维动态、多能自主特点,可用于直接描述从微观到宏观的现实世界.基于时空对象建模理论构建多尺度地理对象耦合演化的集成表达是多粒度时空对象模型支撑地理分析与建模的关键.本文基于多粒度时空对象建模理论,在概率图和条件概率表的基础上发展了一种基于Bayes网络的地理...

关 键 词:多粒度时空对象  多尺度地理对象耦合演化  地理过程  Bayes网络  关联关系  概率图模型  要素特征状态  新安江模型
收稿时间:2020-07-31

Modeling of Geographical Process Evolution of Spatio-temporal Objects of Multi-granularity based on Bayesian Network:A Case Study of the Xin'an Jiang Model
ZHANG Zhengfang,YAN Zhenjun,WANG Zengjie,FU Rong,LUO Wen,YU Zhaoyuan. Modeling of Geographical Process Evolution of Spatio-temporal Objects of Multi-granularity based on Bayesian Network:A Case Study of the Xin'an Jiang Model[J]. Geo-information Science, 2021, 23(1): 124-133. DOI: 10.12082/dqxxkx.2021.200426
Authors:ZHANG Zhengfang  YAN Zhenjun  WANG Zengjie  FU Rong  LUO Wen  YU Zhaoyuan
Affiliation:1. Key Laboratory of Virtual Geographic Environment of The Ministry of Education (Nanjing Normal University), Nanjing 210023, China2. Cultivation Base of State Key Laboratory of Geographical Environment Evolution, Jiangsu Province, Nanjing 210023, China3. Jiangsu Provincial Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Abstract:Spatio-temporal objects of multi-granularity have the characteristics of multi-granularity, multi-type,multi-form, multi-reference system, multi-relation, multi-dimensional dynamics, and multi-energy autonomy. It can be used to directly describe the real world from micro to macro. Based on the spatio-temporal objects modeling theory, constructing the integrated expression of the coupled evolution of multi-scale geographic objects is the key to supporting geographic analysis and modeling with spatio-temporal objects of multigranularity model. Based on spatio-temporal objects of multi-granularity modeling theory, this paper develops a Bayesian network-based geographic process evolution expression and modeling method on the basis of probability diagrams and conditional probability tables. This method uses spatio-temporal objects of multigranularity as Bayesian network nodes, and constructs Bayesian network according to the association relationship between spatio-temporal objects of multi-granularity. It uses Bayesian probability to express the strength of the relationship between spatio-temporal objects of multi-granularity. And it describes the dynamic changes of the feature state of the elements through the update operator and the probability graph model. Based on this method, the Xin’anjiang Model is selected to conduct the modeling and simulation experiment of the geographic process of spatio-temporal objects of multi-granularity. This paper uses the hydrological data of Chengcun Village from 1989 to 1995 as training data, and the hydrological data of 1996 as simulated data. Using precipitation surface, evaporation surface, runoff surface and confluence surface to construct Bayesian network and simulate the state of runoff and sink flow. The experimental results show that the method can not only model the evolution of hydrological process, but also can simulate the changes of runoff and sink flow in the hydrological process, and the correct rate can reach 97.5% and 95.9%.
Keywords:spatio-temporal objects of multi-granularity  the coupled evolution of multi-scale geographic objects  geographic process  bayesian network  connection relation  probabilistic graphical model  feature state of the elements  the Xin’an jiang Model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号