首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A real-time meteorological-based troposphere (RMT) correction with integrity bound for long baseline DGPS
Authors:Yujie Zhang  Chris G Bartone
Institution:(1) Avionics Engineering Center, Ohio University, 234H Stocker Center, Athens, OH 45701-2979, USA;(2) School of Electrical Engineering and Computer Science, Ohio University, 351 Stocker Center, Athens, OH 45701-2979, USA
Abstract:This paper concentrates on the analysis of a real-time meteorological (MET)-based troposphere (RMT) model where MET data are used in real-time to provide troposphere error corrections with a bounded level of integrity for a prototype National Differential Global Positioning System-High Performance (NDGPS-HP) architecture. Toward this goal, three aspects are studied for this approach: sensitivity analysis, accuracy assessment, and integrity analysis. A Hopfield zenith delay and Chao mapping function models were chosen as a good compromise between accuracy and complexity in the integrity analysis. The sensitivity analysis results indicate that the Hopfield model is mostly sensitive to hot humid conditions, which is compounded slightly more and where some relative humidity sensors are less accurate. The accuracy assessment was performed with respect to both absolute and relative accuracy. In the absolute accuracy assessment, the comparison was made in terms of zenith troposphere delay estimation error, with respect to the International GPS Service (IGS) final troposphere zenith path delay (ZPD) product, which was used as the true ZPD. For locations where IGS stations are not available, a relative accuracy assessment was performed whereby comparisons were made in terms of GPS double difference (DD) carrier-phase troposphere correction residuals using various techniques. The accuracy assessment results indicate that the RMT has insignificant differences from the prototype National Oceanic and Atmosphere Administration (NOAA) troposphere error forecast model. An integrity analysis was performed, which presents integrity bounds for the RMT that can be applied to a NDGPS-HP architecture in which integrity requirements exist. The overriding goal of this effort was to establish a preliminary real-time troposphere error estimation model, with defined levels of integrity in its troposphere error estimation that can be included in an NDGPS-HP architecture, where integrity is a key system requirement. The conclusion is drawn that the RMT model may be well suited for a variety of users within a NDGPS-HP architecture. An erratum to this article can be found at
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号