首页 | 本学科首页   官方微博 | 高级检索  
     检索      

鲁棒多特征谱聚类的高光谱影像波段选择
引用本文:孙伟伟,杨刚,彭江涛,孟祥超.鲁棒多特征谱聚类的高光谱影像波段选择[J].遥感学报,2022,26(2):397-405.
作者姓名:孙伟伟  杨刚  彭江涛  孟祥超
作者单位:1.宁波大学 地理与空间信息技术系, 宁波 315211;2.湖北大学 数学与统计学学院, 湖北省应用数学重点实验室, 武汉 430062;3.宁波大学 信息科学与工程学院, 宁波 315211
基金项目:国家自然科学基金(编号:42122009,42171351,41971296,61871177);浙江省自然科学基金(编号:LR1901D0001);湖北省自然科学基金(编号:2021CFA087);宁波市科技计划项目(编号:2021S089,2021Z107);浙江省省属高校基本科研业务费专项资金资助(编号:SJLZ2022002);浙江省自然资源厅科技项目(编号:2021-30,2021-31)
摘    要:传统谱聚类的高光谱影像波段选择模型中,采用的波段相似矩阵受到噪声或异常值的影响且仅能表征波段的单一相似特征,导致波段子集的选取结果受到限制.本文从波段选择的目的 出发,提出鲁棒多特征谱聚类方法,整合多个特征的波段相似矩阵来形成综合相似矩阵以解决上述问题.该方法假设4种相似性度量包括光谱信息散度、光谱角度距离、波段相关性...

关 键 词:遥感  高光谱遥感  降维  波段选择  分类  鲁棒多特征谱聚类
收稿时间:2019/5/25 0:00:00

Robust multi-feature spectral clustering for hyperspectral band selection
SUN Weiwei,YANG Gang,PENG Jiangtao,MENG Xiangchao.Robust multi-feature spectral clustering for hyperspectral band selection[J].Journal of Remote Sensing,2022,26(2):397-405.
Authors:SUN Weiwei  YANG Gang  PENG Jiangtao  MENG Xiangchao
Institution:1.Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China;2.Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China;3.Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
Abstract:The Hughes problem together with strong intra-band correlations and massive data seriously hinders hyperspectral processing and further applications. Dimensionality reduction using band selection can be used to conquer the abovementioned problems and guarantee the application performance of hyperspectral data. In particular, spectral clustering is a typical method for high-dimensional hyperspectral data. This method finds clusters of all hyperspectral bands on the connected graph and selects the representatives. Unfortunately, the regular similarity measures are negatively affected by outliers or noise of hyperspectral data in measuring the similarity of different bands. They could also only represent one feature of band similarity and have respective limitations. Accordingly, the obtained similarity matrix could not represent the full information of band selection required and could not guarantee obtaining aimed bands from spectral clustering. Therefore, we propose a Robust Multifeature Spectral Clustering (RMSC) method to solve the two problems mentioned above and enhance the performance of hyperspectral band selection from spectral clustering.The RMSC combines multiple features of similarity measures for pairwise bands, namely, information entropy, band correlation, and band dissimilarity, to construct the integrated similarity matrix. It utilizes spectral information divergence to quantify the information entropy between pairwise bands. The coefficient correlation is utilized to measure the band correlations and construct the similarity matrix of band correlations. The Laplacian graph is also adopted to construct a similarity matrix and show the dissimilarity between different bands considering the inner clustering structure of all bands. The spectral angle distance matrix is constructed as well to reflect the similarity from the aspects of overall differences. The RMSC regards that each similarity matrix of all four features reflect the underlying true clustering information of all bands and has low-rank property. It formulates the estimation of combined dissimilarity matrix into a low-rank and sparse decomposition problem and utilizes the augmented Lagrangian multiplier to solve it. Thereafter, it implements the regular spectral clustering on the integrated similarity matrix and selects the representative bands from each cluster.Two hyperspectral datasets are used to design four groups of experiments and testify the performance of RMSC. Five state-of-the-art methods, namely, WaluDI, fast density-peak-based clustering, orthogonal projections based band selection, Improved Sparse Spectral Clustering (ISSC) and SC-SID, and support vector machine, are used to quantify the classification accuracy. Experimental results show that RSMC outperforms the five other band selection methods in overall classification accuracy with shorter computational time. The regularization parameter is insensitive to RMSC, and a small candidate could produce high classification accuracy.RMSC is better in selecting representative bands than current spectral clustering such as ISSC. It can also be a good choice in hyperspectral dimensionality reduction.
Keywords:remote sensing  hyperspectral remote sensing  dimensionality reduction  band selection  spectral clustering  robust multi-feature spectral clustering
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号