首页 | 本学科首页   官方微博 | 高级检索  
     

Changes in the patterns of inorganic nitrogen and TN/TP ratio and the associated mechanism of biological regulation in the shallow lakes of the middle and lower reaches of the Yangtze River
摘    要:The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL-1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL-1>TP>0.035 mgL-1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplank-ton might be the vital regulating factor. When TP<0.035 mgL-1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.


Changes in the patterns of inorganic nitrogen and TN/TP ratio and the associated mechanism of biological regulation in the shallow lakes of the middle and lower reaches of the Yangtze River
WU Shikai,XIE Ping,WANG Songbo,ZHOU Qiong. Changes in the patterns of inorganic nitrogen and TN/TP ratio and the associated mechanism of biological regulation in the shallow lakes of the middle and lower reaches of the Yangtze River[J]. Science in China(Earth Sciences), 2006, 49(Z1). DOI: 10.1007/s11430-006-8112-x
Authors:WU Shikai  XIE Ping  WANG Songbo  ZHOU Qiong
Abstract:The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL-1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL-1>TP>0.035 mgL-1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplank-ton might be the vital regulating factor. When TP<0.035 mgL-1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.
Keywords:nitrate-nitrogen   ammonium-nitrogen   nitrite-nitrogen   shallow lakes   phytoplankton.
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号