首页 | 本学科首页   官方微博 | 高级检索  
     


The solubility of TiO2 in olivine: implications for the mantle wedge environment
Authors:L. Dobrzhinetskaya   K. N. Bozhilov  H. W. Green II
Affiliation:

Institute of Geophysics and Planetary Physics and Department of Earth Sciences, University of California, Riverside, CA 92521, USA

Abstract:
One characteristic of many subduction-zone garnet peridotites is that they contain titanium-bearing phases not otherwise found in mantle rocks. In particular, titanoclinohumite and/or its breakdown assemblage consisting of symplectic intergrowths of olivine and ilmenite is common in many of these bodies. The Alpe Arami garnet lherzolite of the Swiss Alps, while lacking titanoclinohumite, displays instead large numbers of FeTiO3 rod-shaped precipitates in the oldest generation of olivine, amounting to approximately 1% by volume, indicating that at some time in its past, the peridotite experienced conditions under which the solubility of TiO2 in olivine was >0.6 wt.%. In order to test the hypothesis that the environment of very high solubility of TiO2 in olivine is to be found at very high pressures, we have conducted experiments on lherzolite compositions with added ilmenite at pressures between 5 and 12 GPa and temperatures of 1350–1700 K. Our results on anhydrous compositions show that whereas solubility of TiO2 was not detected in olivine at 5 GPa, 1400 K where it coexists with rutile, when rutile disappeared from the paragenesis, the solubility climbed to 0.4 wt.% at 8 GPa, 0.5 wt.% at 10 GPa and to >1.0 wt.% at 12 GPa, 1700 K. These results support our previous interpretations from titanate morphology and abundance that the Alpe Arami massif has surfaced from P=10 GPa but remove the need to suggest a deeper origin and possible precursor phase such as wadsleyite. They also support the hypothesis that garnet peridotites with unusual Ti-bearing phases reflect a unique mantle environment occurring in the mantle wedge overlying subduction zones.
Keywords:Olivine   Titanium solubility   Mantle wedge   Deep subduction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号