首页 | 本学科首页   官方微博 | 高级检索  
     

Banach空间中非扩张映像的强收敛性
引用本文:李全刚. Banach空间中非扩张映像的强收敛性[J]. 成都信息工程学院学报, 2010, 25(3): 321-323
作者姓名:李全刚
作者单位:成都信息工程学院数学学院,四川,成都,610225
摘    要:在实光滑和一致凸Banach空间中通过引入广义度量投影,证明了一个关于非扩张映像的修正Mann迭代序列的强收敛性定理。目的是利用广义度量投影来修改Nakajo与Takahashi的迭代方案,并将Nakajo与Taka—hashi文中所对应的主要结果由Hilbert空间推广到实光滑和一致凸Banach空间。

关 键 词:应用数学  非线性分析  一致凸Eanach空间  广义度量投影  非扩张映像  强收敛  不动点

Strong Convergence for Nonexpansive Mappings in Banach Spaces
LI Quan-gang. Strong Convergence for Nonexpansive Mappings in Banach Spaces[J]. Journal of Chengdu University of Information Technology, 2010, 25(3): 321-323
Authors:LI Quan-gang
Affiliation:LI Quan-gang (School of Mathemaatics, CULT, Chengdu 610225, China)
Abstract:In this paper, it is shown that in a real smooth and uniformly convex Banaeh space, a strong convergence theorem of modified Mann iterations for nonexpansive mappings is proved by using generalized metric projections. The purpose of this paper is to modify the iterative scheme of Nakajo and Takahashi by using generalized metric pro- jections, and to extend the corresponding main result of Nakajo and Takahashi from Hilbert spaces to real smooth and uniformly convex Banach spaces.
Keywords:applied mathematics  nonlinear analysis  uniformly convex Banach space  generalized metric projections  nonexpansive mapping  strong convergence  fixed points
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号